SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy

Hsin Yang Huang, Shang Hsiu Hu, Shih Ya Hung, Chih Sheng Chiang, Hao Li Liu, Tsung Lang Chiu, Hsin Yi Lai, You Yin Chen*, San Yuan Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

Nanobubbles can serve as promising, next-generation theranostic platforms for ultrasound (US) and magnetic resonance (MR) imaging, and combined magnetic targeting (MT) and high-intensity focused ultrasound (HIFU)-triggered drug release for tumor therapy. Nanobubble-based dual contrast enhancement agents encapsulated with perfluoropentane and stabilized with superparamagnetic iron oxide (SPIO) nanoparticles have been synthesized through a single-step emulsion process from thermosensitive F127 and polyacrylic acid (PAA). Both US and MR imaging contrast can be optimized by varying the shell thickness and SPIO-embedded concentration. The US contrast can be enhanced from a mean gray value of 62 to 115, and the MR r2 value can be enhanced from 164 to 208 (s- 1 mM- 1 Fe) by increasing the SPIO concentration from 14.1 to 28.2 mg/mL, respectively. In vivo investigations of SPIO-embedded nanobubbles in excised tumors under external MT revealed that the US and MR signals change quantitatively compared to the same site without MT. This combined strategy enables the nanobubbles to enhance both passive targeting (increasing the permeability by HIFU) and physical MT of chemotherapeutic drugs to tumors. The integration of functionalities makes this nanobubble system a powerful and viable new tool to achieve simultaneous in vivo tumor imaging and efficacious cancer therapy.

Original languageEnglish
Pages (from-to)118-127
Number of pages10
JournalJournal of Controlled Release
Volume172
Issue number1
DOIs
StatePublished - 2013

Keywords

  • Focus ultrasound
  • Magnetic targeting
  • Nanobubble
  • Superparamagnetic

Fingerprint

Dive into the research topics of 'SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy'. Together they form a unique fingerprint.

Cite this