Sparse Tensor-based point cloud attribute compression using Augmented Normalizing Flows

Tzu Po Lin, Monyneath Yim, Jui Chiu Chiang, Wen Hsiao Peng, Wen Nung Lie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

The large amount of data of point cloud poses challenges for efficient storage and transmission. To address this problem, various learning-based techniques, in addition to rule-based solutions, have been developed for point cloud compression. While many previous works employed the variational autoencoder (VAE) structure, they have failed to achieve promising performance at high bitrates. In this paper, we propose a novel point cloud attribute compression technique based on the Augmented Normalizing Flow (ANF) model, which incorporates sparse convolutions where a sparse tensor is used to represent the point cloud attribute. The invertibility of the NF model provides better reconstruction compared to VAE-based coding schemes. ANF provides a more flexible way to model the input distribution by introducing additional conditioning variables into the flow. Not only comparable to G-PCC, the experimental results demonstrate the effectiveness and superiority of the proposed method over several learning-based point cloud attribute compression techniques, even without requiring sophisticated context modeling.

Original languageEnglish
Title of host publication2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1739-1744
Number of pages6
ISBN (Electronic)9798350300673
DOIs
StatePublished - 2023
Event2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023 - Taipei, Taiwan
Duration: 31 Oct 20233 Nov 2023

Publication series

Name2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023

Conference

Conference2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023
Country/TerritoryTaiwan
CityTaipei
Period31/10/233/11/23

Fingerprint

Dive into the research topics of 'Sparse Tensor-based point cloud attribute compression using Augmented Normalizing Flows'. Together they form a unique fingerprint.

Cite this