Single Patch Based 3D High-Fidelity Mask Face Anti-Spoofing

Samuel Huang, Wen-Huang Cheng, Robert Cheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Face anti-spoofing is rapidly increasing in importance as facial recognition systems have become common in the financial and security fields. Among all kinds of attack, 3D high-fidelity masks are especially hard to defend. Recently, CASIA introduced a large scale dataset CASIA-SURF HiFiMask, which comprises of 54, 600 videos recorded from 75 subjects with 225 high-fidelity masks. In this paper, we design a lightweight network with single patch input on the basis of CDCN++, and supervise it by focal loss. The proposed method achieves the Average Classification Error Rate (ACER) of 3.215 on the Protocol 3 of CASIASURF HiFiMask dataset and ranks the third best model in the Chalearn 3D High-Fidelity Mask Face Presentation Attack Detection Challenge at ICCV 2021.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages842-845
Number of pages4
ISBN (Electronic)9781665401913
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2021-October
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'Single Patch Based 3D High-Fidelity Mask Face Anti-Spoofing'. Together they form a unique fingerprint.

Cite this