Simulating velocity-dependent friction behavior of planar sliding by the particulate interface model of DEM

Chia Chi Chiu*, Meng Chia Weng

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Planar sliding is a typical failure mode of dip slops, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. Based on the previous studies, the friction coefficient of the sliding plane varies with the velocity. To reflect the velocity-dependent friction behavior, this study proposes a particulate interface model (PIM) of the particulate DEM to simulate the planar sliding behavior. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of dip slope failure.

Original languageEnglish
Title of host publication5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, YSRM 2019
PublisherInternational Society for Rock Mechanics and Rock Engineering
Pages339-344
Number of pages6
ISBN (Electronic)9784907430047
StatePublished - Dec 2019
Event5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, YSRM 2019 - Okinawa, Japan
Duration: 1 Dec 20194 Dec 2019

Publication series

Name5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, YSRM 2019

Conference

Conference5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, YSRM 2019
Country/TerritoryJapan
CityOkinawa
Period1/12/194/12/19

Keywords

  • Dip slope
  • Discrete element method
  • Planar sliding

Fingerprint

Dive into the research topics of 'Simulating velocity-dependent friction behavior of planar sliding by the particulate interface model of DEM'. Together they form a unique fingerprint.

Cite this