Short- and long-term quantitation reproducibility of brain metabolites in the medial wall using proton echo planar spectroscopic imaging

Shang Yueh Tsai, Yi Ru Lin, Woan Chyi Wang, David M. Niddam*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Proton echo planar spectroscopic imaging (PEPSI) is a fast magnetic resonance spectroscopic imaging (MRSI) technique that allows mapping spatial metabolite distributions in the brain. Although the medial wall of the cortex is involved in a wide range of pathological conditions, previous MRSI studies have not focused on this region. To decide the magnitude of metabolic changes to be considered significant in this region, the reproducibility of the method needs to be established. The study aims were to establish the short- and long-term reproducibility of metabolites in the right medial wall and to compare regional differences using a constant short-echo time (TE30) and TE averaging (TEavg) optimized to yield glutamatergic information. 2D sagittal PEPSI was implemented at 3. T using a 32 channel head coil. Acquisitions were repeated immediately and after approximately 2. weeks to assess the coefficients of variation (COV). COVs were obtained from eight regions-of-interest (ROIs) of varying size and location. TE30 resulted in better spectral quality and similar or lower quantitation uncertainty for all metabolites except glutamate (Glu). When Glu and glutamine (Gln) were quantified together (Glx) reduced quantitation uncertainty and increased reproducibility was observed for TE30. TEavg resulted in lowered quantitation uncertainty for Glu but in less reliable quantification of several other metabolites. TEavg did not result in a systematically improved short- or long-term reproducibility for Glu. The ROI volume was a major factor influencing reproducibility. For both short- and long-term repetitions, the Glu COVs obtained with TEavg were 5-8% for the large ROIs, 12-17% for the medium sized ROIs and 16-26% for the smaller cingulate ROIs. COVs obtained with TE30 for the less specific Glx were 3-5%, 8-10% and 10-15%. COVs for N-acetyl aspartate, creatine and choline using TE30 with long-term repetition were between 2-10%. Our results show that the cost of more specific glutamatergic information (Glu versus Glx) is the requirement of an increased effect size especially with increasing anatomical specificity. This comes in addition to the loss of sensitivity for other metabolites. Encouraging results were obtained with TE30 compared to other previously reported MRSI studies. The protocols implemented here are reliable and may be used to study disease progression and intervention mechanisms.

Original languageEnglish
Pages (from-to)1020-1029
Number of pages10
JournalNeuroImage
Volume63
Issue number3
DOIs
StatePublished - 15 Nov 2012

Keywords

  • Cingulate
  • Glutamate
  • Glutamine
  • PEPSI
  • Sagittal 2D MRSI
  • TE averaging

Fingerprint

Dive into the research topics of 'Short- and long-term quantitation reproducibility of brain metabolites in the medial wall using proton echo planar spectroscopic imaging'. Together they form a unique fingerprint.

Cite this