TY - GEN
T1 - SEM-Latch
T2 - 59th ACM/IEEE Design Automation Conference, DAC 2022
AU - Tang, Zhong Li
AU - Liang, Chia Wei
AU - Hsiao, Ming Hsien
AU - Wen, Charles H.P.
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/7/10
Y1 - 2022/7/10
N2 - Soft errors (primarily single-event transients (SET) and single-event upsets (SEU)) are receiving increased attention due to the increasing prevalence of automotive and biomedical electronics. In recent years, several latch designs have been developed for SEU/SET protection, but each has its own issues regarding timing, area, and power. Therefore, we propose a novel soft-error mitigating latch design, called SEM-Latch, which extends QUATRO and incorporates a speed path whereas embedding a reference voltage generator (RVG) for simultaneously improving timing, area, and power in 45nm CMOS process. SEM-Latch effectively reduces the power, area, and PDAP (product of delay, area, and power) by an average of 1.4%, 12.5%, and 8.7%, respectively, in comparison to a previous latch (HPST) with equivalent SEU protection. Furthermore, in comparison to AMSER-Latch, SEM-Latch reduces area, timing overhead and PDAP by 27.2%, 48.2%, and 60.2%, respectively, to provide 99.9999% particle rejection rate for SET protection.
AB - Soft errors (primarily single-event transients (SET) and single-event upsets (SEU)) are receiving increased attention due to the increasing prevalence of automotive and biomedical electronics. In recent years, several latch designs have been developed for SEU/SET protection, but each has its own issues regarding timing, area, and power. Therefore, we propose a novel soft-error mitigating latch design, called SEM-Latch, which extends QUATRO and incorporates a speed path whereas embedding a reference voltage generator (RVG) for simultaneously improving timing, area, and power in 45nm CMOS process. SEM-Latch effectively reduces the power, area, and PDAP (product of delay, area, and power) by an average of 1.4%, 12.5%, and 8.7%, respectively, in comparison to a previous latch (HPST) with equivalent SEU protection. Furthermore, in comparison to AMSER-Latch, SEM-Latch reduces area, timing overhead and PDAP by 27.2%, 48.2%, and 60.2%, respectively, to provide 99.9999% particle rejection rate for SET protection.
UR - http://www.scopus.com/inward/record.url?scp=85137484124&partnerID=8YFLogxK
U2 - 10.1145/3489517.3530533
DO - 10.1145/3489517.3530533
M3 - Conference contribution
AN - SCOPUS:85137484124
T3 - Proceedings - Design Automation Conference
SP - 865
EP - 870
BT - Proceedings of the 59th ACM/IEEE Design Automation Conference, DAC 2022
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 10 July 2022 through 14 July 2022
ER -