Abstract
We report a new peptide-based urchin-shaped structure prepared through two-step self-assembly of tetraphenylethylene-diserine (TPE-SS). Hydrogelation generated nanobelts through the first stage of self-assembly of TPE-SS; these nanobelts further transformed on silicon wafers into urchin-like microstructures featuring nanosized spines. The presence of the TPE moiety in the hydrogelator resulted in aggregation-induced emission characteristics both in the solution and in the gel phases. TPE-SS has the lowest molecular weight of any TPE-capped hydrogelator with β-sheet-like structures under physiological pH. This new design strategy appears to be useful for generating three-dimensional self-assembled microstructures and multifunctional biomaterials. We found that TPE-SS is biocompatible with human mesenchymal stem cells and breast cancer cells, making them potential applications in tissue engineering and biomedical research.
Original language | English |
---|---|
Pages (from-to) | 562-571 |
Number of pages | 10 |
Journal | Bioconjugate Chemistry |
Volume | 34 |
Issue number | 3 |
DOIs | |
State | Published - 15 Mar 2023 |