@inproceedings{4f93b26886aa4ae8a22e871f148d5206,
title = "Segmenting Hepatic Lesions Using Residual Attention U-Net with an Adaptive Weighted Dice Loss",
abstract = "We propose a novel network architecture called Residual Attention U-Net (ResAttU-Net) for segmenting hepatic lesions. Our model incorporates residual blocks that can extract more complex features as compared with traditional convolutional layers combined with a skip-connection attention module that learns to focus on the relevant features for the task of hepatic lesions segmentation. Moreover, we train our model using an adaptive weighted dice loss that prioritizes the pixels of the tumor class over the pixels of the background class. We evaluate our model on the MICCAI Liver Tumor Segmentation (LiTS) benchmark dataset. Our experimental results show that our method significantly improves upon several state-of-the-art baselines for hepatic lesion or liver tumor segmentation.",
keywords = "attention module, CT image segmentation, hepatic lesion factor, residual block",
author = "Liu, {Yu Cheng} and Tan, {Daniel Stanley} and Chen, {Jyh Cheng} and Cheng, {Wen Huang} and Hua, {Kai Lung}",
year = "2019",
month = sep,
doi = "10.1109/ICIP.2019.8803471",
language = "English",
series = "Proceedings - International Conference on Image Processing, ICIP",
publisher = "IEEE Computer Society",
pages = "3322--3326",
booktitle = "2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings",
address = "美國",
note = "26th IEEE International Conference on Image Processing, ICIP 2019 ; Conference date: 22-09-2019 Through 25-09-2019",
}