Abstract
Purpose: To develop a series of robust and readily adoptable protocols for the application of deep brain stimulation (DBS)-functional MRI (fMRI) in rodents. Methods: DBS-fMRI procedures were conducted in rat and mouse under varying anesthetic conditions (isoflurane in rat and mouse, α-chloralose in rat). A homemade two-channel tungsten microwire electrode was used to minimize magnetic susceptibility artifacts, and was targeted to the ventral poster-omedial (VPM) thalamus for DBS-fMRI scanning procedures. Results: Compared with a commercially available MR-compatible electrode, the tungsten microwire generated greatly reduced magnetic-susceptibility artifacts. In the rat, VPM-DBS using the microwire electrode resulted in robust positive blood-oxygen- level-dependent signal changes in somatosensory cortex that were relatively independent of anesthetic type. In the mouse, VPM-DBS similarly generated large, positive neurovascular responses in somatosensory cortex that were detected using cerebral blood volume measurements. Conclusion: Collectively, this work describes reasonable and easily adoptable procedures for conducting DBS-fMRI studies in rodent models. The protocols developed herein may be extended to study DBS effects under numerous experimental conditions and at varying stimulation targets.
Original language | English |
---|---|
Pages (from-to) | 1246-1251 |
Number of pages | 6 |
Journal | Magnetic Resonance in Medicine |
Volume | 73 |
Issue number | 3 |
DOIs | |
State | Published - 1 Mar 2015 |
Keywords
- Deep brain stimulation
- fMRI
- Mouse
- Rat
- Tungsten electrode