@inproceedings{00486973626c4b23b8451d3235a9758c,
title = "RGBD Salient Object Detection using Spatially Coherent Deep Learning Framework",
abstract = "In this paper, a learning based salient object detection method for RGBD images is introduced. With the assistance of depth information, the silhouette features of an object can be retrieved primarily, and it can lead to better detection of salient objects. In addition, many recent works still rely on some image post-processing methods to improve their performance. We develop a more efficient end-to-end model with a modified design of loss function used in our training network. The design of the new loss function is to increase the spatial coherence of detected salient objects. From the evaluation results, the proposed approach shows good performance compared with the methods that are considered to be state-of-the-art.",
keywords = "deep learning, fully convolutional networks, salient object detection",
author = "Posheng Huang and Shen, {Chin Han} and Hsu-Feng Hsiao",
note = "Publisher Copyright: {\textcopyright} 2018 IEEE.; 23rd IEEE International Conference on Digital Signal Processing, DSP 2018 ; Conference date: 19-11-2018 Through 21-11-2018",
year = "2018",
month = jul,
day = "2",
doi = "10.1109/ICDSP.2018.8631584",
language = "American English",
series = "International Conference on Digital Signal Processing, DSP",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2018 IEEE 23rd International Conference on Digital Signal Processing, DSP 2018",
address = "United States",
}