RF noise scaling trend of MOSFETs from 0.5 μm to 0.13 μm technology nodes

M. C. King*, M. T. Yang, C. W. Kuo, Yun Chang, Albert Chin

*Corresponding author for this work

    Research output: Contribution to journalConference articlepeer-review

    27 Scopus citations

    Abstract

    As scaling down the MOSFET, the ft, keeps increasing but the minimum noise figure (NFmin) is difficult to scale down due to the increasing gate resistance. In this study, the NFmin can be continuously reduced to 0.13 μm technology node (80 nm gate length) by optimizing finger number and channel width. Excellent NFmin of only 0.87 dB is measured with 4 μm finger width and multiple 72 fingers. In addition, high associated gain (22.5 dB), low RF noise (1.0 dB), and low power can be simultaneously achieved in 0.13 μm node MOSFETs using only 6 fingers that is impossible in 0.18 μm case. We have also predicted the future scaling trend of RF noise beyond 0.13 μm node from measured data and well calibrated Fukul's equation.

    Original languageEnglish
    Pages (from-to)9-12
    Number of pages4
    JournalIEEE MTT-S International Microwave Symposium Digest
    Volume1
    DOIs
    StatePublished - 20 Sep 2004
    Event2004 IEEE MITT-S International Microwave Symposium Digest - Fort Worth, TX, United States
    Duration: 6 Jun 200411 Jun 2004

    Keywords

    • Associated gain
    • CMOS
    • F
    • Noise
    • Scaling trend

    Fingerprint

    Dive into the research topics of 'RF noise scaling trend of MOSFETs from 0.5 μm to 0.13 μm technology nodes'. Together they form a unique fingerprint.

    Cite this