TY - JOUR
T1 - Revisiting Domain Randomization via Relaxed State-Adversarial Policy Optimization
AU - Lien, Yun Hsuan
AU - Hsieh, Ping Chun
AU - Wang, Yu Shuen
N1 - Publisher Copyright:
© 2023 Proceedings of Machine Learning Research. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Domain randomization (DR) is widely used in reinforcement learning (RL) to bridge the gap between simulation and reality by maximizing its average returns under the perturbation of environmental parameters. However, even the most complex simulators cannot capture all details in reality due to finite domain parameters and simplified physical models. Additionally, the existing methods often assume that the distribution of domain parameters belongs to a specific family of probability functions, such as normal distributions, which may not be correct. To overcome these limitations, we propose a new approach to DR by rethinking it from the perspective of adversarial state perturbation, without the need for reconfiguring the simulator or relying on prior knowledge about the environment. We also address the issue of over-conservatism that can occur when perturbing agents to the worst states during training by introducing a Relaxed State-Adversarial Algorithm that simultaneously maximizes the average-case and worst-case returns. We evaluate our method by comparing it to state-of-the-art methods, providing experimental results and theoretical proofs to verify its effectiveness. Our source code and appendix are available at https://github.com/sophialien/RAPPO.
AB - Domain randomization (DR) is widely used in reinforcement learning (RL) to bridge the gap between simulation and reality by maximizing its average returns under the perturbation of environmental parameters. However, even the most complex simulators cannot capture all details in reality due to finite domain parameters and simplified physical models. Additionally, the existing methods often assume that the distribution of domain parameters belongs to a specific family of probability functions, such as normal distributions, which may not be correct. To overcome these limitations, we propose a new approach to DR by rethinking it from the perspective of adversarial state perturbation, without the need for reconfiguring the simulator or relying on prior knowledge about the environment. We also address the issue of over-conservatism that can occur when perturbing agents to the worst states during training by introducing a Relaxed State-Adversarial Algorithm that simultaneously maximizes the average-case and worst-case returns. We evaluate our method by comparing it to state-of-the-art methods, providing experimental results and theoretical proofs to verify its effectiveness. Our source code and appendix are available at https://github.com/sophialien/RAPPO.
UR - http://www.scopus.com/inward/record.url?scp=85174395309&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85174395309
SN - 2640-3498
VL - 202
SP - 20939
EP - 20949
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 40th International Conference on Machine Learning, ICML 2023
Y2 - 23 July 2023 through 29 July 2023
ER -