Review of Recent Progress on Vertical GaN-Based PN Diodes

Taofei Pu, Usman Younis, Hsien Chin Chiu, Ke Xu, Hao-Chung Kuo, Xinke Liu*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

42 Scopus citations

Abstract

As a representative wide bandgap semiconductor material, gallium nitride (GaN) has attracted increasing attention because of its superior material properties (e.g., high electron mobility, high electron saturation velocity, and critical electric field). Vertical GaN devices have been investigated, are regarded as one of the most promising candidates for power electronics application, and are characterized by the capacity for high voltage, high current, and high breakdown voltage. Among those devices, vertical GaN-based PN junction diode (PND) has been considerably investigated and shows great performance progress on the basis of high epitaxy quality and device structure design. However, its device epitaxy quality requires further improvement. In terms of device electric performance, the electrical field crowding effect at the device edge is an urgent issue, which results in premature breakdown and limits the releasing superiorities of the GaN material, but is currently alleviated by edge termination. This review emphasizes the advances in material epitaxial growth and edge terminal techniques, followed by the exploration of the current GaN developments and potential advantages over silicon carbon (SiC) for materials and devices, the differences between GaN Schottky barrier diodes (SBDs) and PNDs as regards mechanisms and features, and the advantages of vertical devices over their lateral counterparts. Then, the review provides an outlook and reveals the design trend of vertical GaN PND utilized for a power system, including with an inchoate vertical GaN PND.

Original languageEnglish
Article number101
Pages (from-to)1-14
Number of pages14
JournalNanoscale Research Letters
Volume16
Issue number1
DOIs
StatePublished - Jun 2021

Keywords

  • Edge termination techniques
  • Electrical field crowding
  • Gallium nitride
  • Vertical PN junction diode

Fingerprint

Dive into the research topics of 'Review of Recent Progress on Vertical GaN-Based PN Diodes'. Together they form a unique fingerprint.

Cite this