Abstract
We present an unsupervised learning denoising method, RepE (representation and enhancement), designed for nonlinear optical microscopy images, such as second harmonic generation (SHG) and two-photon fluorescence (TPEF). Addressing the challenge of effectively denoising images with various noise types, RepE employs an encoder network to learn noise-free representations and a reconstruction network to generate denoised images. It offers several key advantages, including its ability to (i) operate without restrictive statistic assumptions, (ii) eliminate the need for clean-noisy pairs, and (iii) requires only a few training images. Comparative evaluations on real-world SHG and TPEF images from esophageal cancer tissue slides (ESCC) demonstrate that our method outperforms existing techniques in image quality metrics. The proposed method provides a practical, robust solution for denoising nonlinear optical microscopy images, and it has the potential to be extended to other nonlinear optical microscopy modalities.
Original language | English |
---|---|
Pages (from-to) | 4245-4248 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 48 |
Issue number | 16 |
DOIs | |
State | Published - 2023 |