TY - JOUR
T1 - Regulating energy gap in Ir-based ionic complexes to generate near-infrared emissions
T2 - Application in solid-state light-emitting electrochemical cells
AU - Lin, Yan Ding
AU - Hsiao, Pei Wan
AU - Chen, Wun Yu
AU - Wu, Sih Yu
AU - Zhang, Wei Min
AU - Lu, Chin Wei
AU - Su, Hai Ching
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Solid-state light-emitting electrochemical cells (LECs) exhibit high potential for commercial electronics owing to their simple solution-processable device architectures, low-voltage operation, and compatibility with inert metal electrodes. However, the low device efficiency of most deep-red and near-infrared (NIR) LECs hinders their application (external quantum efficiency (EQE) < 1.00%). In this study, we demonstrate a simple method to tune the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of iridium-based ionic transition metal complexes (iTMCs) to generate NIR emissions. We investigate a series of cationic iridium complexes with small energy gaps, with 2,2′-bibenzo[d]thiazole fixed as N^N ligand moiety mainly controlling the LUMO energy level, changing a series of C^N ligands. All complexes exhibited deep red/NIR phosphorescence, and these combined devices provided emission peaks at 690–730 nm and were applied as components in LECs, exhibiting a maximum EQE of 1.78% in electroluminescence devices. Using a host–guest emission system with the iridium complex YIr as the host and complex TBBI as the guest, the highest EQE of LECs could be further enhanced to>2.34%, which is the highest value reported for NIR LECs.
AB - Solid-state light-emitting electrochemical cells (LECs) exhibit high potential for commercial electronics owing to their simple solution-processable device architectures, low-voltage operation, and compatibility with inert metal electrodes. However, the low device efficiency of most deep-red and near-infrared (NIR) LECs hinders their application (external quantum efficiency (EQE) < 1.00%). In this study, we demonstrate a simple method to tune the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of iridium-based ionic transition metal complexes (iTMCs) to generate NIR emissions. We investigate a series of cationic iridium complexes with small energy gaps, with 2,2′-bibenzo[d]thiazole fixed as N^N ligand moiety mainly controlling the LUMO energy level, changing a series of C^N ligands. All complexes exhibited deep red/NIR phosphorescence, and these combined devices provided emission peaks at 690–730 nm and were applied as components in LECs, exhibiting a maximum EQE of 1.78% in electroluminescence devices. Using a host–guest emission system with the iridium complex YIr as the host and complex TBBI as the guest, the highest EQE of LECs could be further enhanced to>2.34%, which is the highest value reported for NIR LECs.
UR - http://www.scopus.com/inward/record.url?scp=85161725726&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2023.144055
DO - 10.1016/j.cej.2023.144055
M3 - Article
AN - SCOPUS:85161725726
SN - 1385-8947
VL - 469
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 144055
ER -