Refinement and application of 3d particle location from perspective-shifted plenoptic images

Elise Munz Hall, Zu Puayen Tan, Daniel R. Guildenbecher, Brian S. Thurow

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

With the growth of light field imaging as an emerging diagnostic tool for the measurement of 3D particle fields, various algorithms for 3D particle measurements have been developed. These methods have exploited both the computational refocusing and perspective-shift capabilities of plenoptic imaging. This work continues the development of a 3D particle location method based on perspective-shifted plenoptic images. Specific focus is placed on adaptations that provide increased robustness for variations in and measurement of size and shape characteristics, thus allowing measurements of fragment fields. An experimental data set of non-spherical fragment simulants is studied to examine the dependency of the uncertainty of this perspective-shift based processing method on particle shape and the uncertainty of size measurements of fragments. Synthetic data sets are examined to provide metrics of the relationship between measurement uncertainty that can be achieved using this method, particle density, and processing time requirements.

Original languageEnglish
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Pages1-10
Number of pages10
ISBN (Print)9781624105784
DOIs
StatePublished - 6 Jan 2019
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: 7 Jan 201911 Jan 2019

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
Country/TerritoryUnited States
CitySan Diego
Period7/01/1911/01/19

Fingerprint

Dive into the research topics of 'Refinement and application of 3d particle location from perspective-shifted plenoptic images'. Together they form a unique fingerprint.

Cite this