Recommendations based on personalized tendency for different aspects of influences in social media

Chin Hui Lai*, Duen-Ren Liu, Mei Lan Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Among the applications of Web 2.0, social networking sites continue to proliferate and the volume of content keeps growing; as a result, information overload causes difficulty for users attempting to choose useful and relevant information. To resolve this problem, most researches only utilize users' preferences, the content of items or social influence to make recommendations. However, people's preferences for items may be affected by social friends, personal interest and item popularity. Moreover, each factor has a different impact on each user. In this work, we propose a novel recommendation method based on different types of influences: social, interest and popularity, using personal tendencies in regard to these factors to recommend photos in a photo-sharing website, Flickr. The personal tendencies related to these three influences are regarded as personalized weights to combine influence scores for predicting the scores of items. The experimental results show that our proposed methods can improve the quality of recommendations.

Original languageEnglish
Pages (from-to)814-829
Number of pages16
JournalJournal of Information Science
Volume41
Issue number6
DOIs
StatePublished - 1 Dec 2015

Keywords

  • Interest influence
  • popularity influence
  • recommender system
  • social influence
  • social network

Fingerprint

Dive into the research topics of 'Recommendations based on personalized tendency for different aspects of influences in social media'. Together they form a unique fingerprint.

Cite this