Rapid detection of live bacteria in water using nylon filter membrane-integrated centrifugal microfluidics

Chun Hao Chang, Chih Ling Wang, Bor Ran Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Water is one of the most indispensable elements for human beings. People can live without food for a couple of weeks but cannot live without water for a couple of days. Unfortunately, drinking water is not always safe around the world; in many areas, the water for drinking could be contaminated with various microbes. However, the total viable microbe count in water still relies on culture-based methods in laboratories. Therefore, in this work, we report a novel, simple, and highly efficient strategy to detect live bacteria in water via a nylon membrane-integrated centrifugal microfluidic device. A handheld fan and a rechargeable hand warmer were utilized as the centrifugal rotor and the heat resource for reactions, respectively. The bacteria in water can be rapidly concentrated >500-fold by our centrifugation system. After incubation with water-soluble tetrazolium-8 (WST-8), the color change of the nylon membranes can be visually interpreted directly by the naked eye or recorded with a smartphone camera. The whole process can be finished in 3 h, and the detection limit can reach 102 CFU/mL. The detection range ranges from 102 CFU/mL to 105 CFU/mL. The cell counting results of our platform are highly positively correlated with the results of cell counting by the conventional lysogeny broth (LB) agar plate approach or the commercial 3 M Petrifilm™ cell counting plate. Our platform provides a convenient and sensitive strategy for rapid monitoring. We highly anticipate that this platform can improve water quality monitoring in resource-poor countries in the near future.

Original languageEnglish
Article number115403
JournalBiosensors and Bioelectronics
Volume236
DOIs
StatePublished - 15 Sep 2023

Keywords

  • Bacterial detection
  • Centrifugal microfluidics
  • Colorimetric detection
  • Nylon membrane
  • On-site detection

Fingerprint

Dive into the research topics of 'Rapid detection of live bacteria in water using nylon filter membrane-integrated centrifugal microfluidics'. Together they form a unique fingerprint.

Cite this