TY - JOUR
T1 - Pros and cons in tinnitus brain
T2 - Enhancement of global connectivity for alpha and delta waves
AU - Li, Yi Hsuan
AU - Chi, Tai-Shih
AU - Shiao, An Suey
AU - Li, Lieber Po Hung
AU - Hsieh, Jen-Chuen
N1 - Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2022/4/20
Y1 - 2022/4/20
N2 - Interactions among cortical areas of tinnitus brain remained unclear. Weaker alpha and stronger delta activities in tinnitus have been noted over auditory cortices. However, the interplay between a single substrate with whole brain within alpha/delta band remained unknown. Thirty-one patients with chronic tinnitus were recruited. Thirty-four healthy volunteers served as controls. Magnetoencephalographic measurements of spontaneous activities were performed. The strength of alpha/delta activities was analyzed. By dividing cortices into 38 regions of interest (ROIs), measurements of connectivity were performed using amplitude envelope correlation (AEC). Global connectivity was calculated by adding and averaging connectivity of single ROI with every other region. There were no significant differences in mean power of alpha and delta band between groups, despite the trend of stronger alpha and weaker delta band in controls. The global connectivity of alpha wave was significantly stronger in tinnitus for left frontal pole, and of delta wave for bilateral pars orbitalis, bilateral superior temporal, bilateral middle temporal, right pars triangularis, right transverse temporal, right inferior temporal, and right supra-marginal. The global connectivity of alpha/delta waves was enhanced for tinnitus in designated ROIs of frontal/temporal/parietal lobes. The underlying mechanism(s) might be associated with augmentation/modulation of tinnitus perception. Our results corroborated the evolving consensus about neural correlates inside frontal/temporal/parietal lobes as essential elements of hubs for central processing of tinnitus. Further study to explore the resolution of effective connectivity between those ROIs and respective substrates by using AEC will be necessary for the evaluation of pathogenetic scenario for tinnitus.
AB - Interactions among cortical areas of tinnitus brain remained unclear. Weaker alpha and stronger delta activities in tinnitus have been noted over auditory cortices. However, the interplay between a single substrate with whole brain within alpha/delta band remained unknown. Thirty-one patients with chronic tinnitus were recruited. Thirty-four healthy volunteers served as controls. Magnetoencephalographic measurements of spontaneous activities were performed. The strength of alpha/delta activities was analyzed. By dividing cortices into 38 regions of interest (ROIs), measurements of connectivity were performed using amplitude envelope correlation (AEC). Global connectivity was calculated by adding and averaging connectivity of single ROI with every other region. There were no significant differences in mean power of alpha and delta band between groups, despite the trend of stronger alpha and weaker delta band in controls. The global connectivity of alpha wave was significantly stronger in tinnitus for left frontal pole, and of delta wave for bilateral pars orbitalis, bilateral superior temporal, bilateral middle temporal, right pars triangularis, right transverse temporal, right inferior temporal, and right supra-marginal. The global connectivity of alpha/delta waves was enhanced for tinnitus in designated ROIs of frontal/temporal/parietal lobes. The underlying mechanism(s) might be associated with augmentation/modulation of tinnitus perception. Our results corroborated the evolving consensus about neural correlates inside frontal/temporal/parietal lobes as essential elements of hubs for central processing of tinnitus. Further study to explore the resolution of effective connectivity between those ROIs and respective substrates by using AEC will be necessary for the evaluation of pathogenetic scenario for tinnitus.
KW - Alpha wave
KW - Amplitude envelope correlation (AEC)
KW - Connectivity
KW - Delta wave
KW - Magnetoencephalography (MEG)
KW - Tinnitus
UR - http://www.scopus.com/inward/record.url?scp=85122408661&partnerID=8YFLogxK
U2 - 10.1016/j.pnpbp.2021.110497
DO - 10.1016/j.pnpbp.2021.110497
M3 - Article
C2 - 34922998
AN - SCOPUS:85122408661
SN - 0278-5846
VL - 115
SP - 8
JO - Progress in Neuro-Psychopharmacology and Biological Psychiatry
JF - Progress in Neuro-Psychopharmacology and Biological Psychiatry
M1 - 110497
ER -