TY - GEN
T1 - Probabilistic Skyline Query Processing over Uncertain Data Streams in Edge Computing Environments
AU - Lai, Chuan-Chi
AU - Chen, Yan Lin
AU - Liu, Chuan Ming
AU - Wang, Li Chun
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/12
Y1 - 2020/12
N2 - With the advancement of technology, the data generated in our lives is getting faster and faster, and the amount of data that various applications need to process becomes extremely huge. Therefore, we need to put more effort into analyzing data and extracting valuable information. Cloud computing used to be a good technology to solve a large number of data analysis problems. However, in the era of the popularity of the Internet of Things (IoT), transmitting sensing data back to the cloud for centralized data analysis will consume a lot of wireless communication and network transmission costs. To solve the above problems, edge computing has become a promising solution. In this paper, we propose a new algorithm for processing probabilistic skyline queries over uncertain data streams in an edge computing environment. We use the concept of a second skyline set to filter data that is unlikely to be the result of the skyline. Besides, the edge server only sends the information needed to update the global analysis results on the cloud server, which will greatly reduce the amount of data transmitted over the network. The results show that our proposed method not only reduces the response time by more than 50% compared with the brute force method on two-dimensional data but also maintains the leading processing speed on high-dimensional data.
AB - With the advancement of technology, the data generated in our lives is getting faster and faster, and the amount of data that various applications need to process becomes extremely huge. Therefore, we need to put more effort into analyzing data and extracting valuable information. Cloud computing used to be a good technology to solve a large number of data analysis problems. However, in the era of the popularity of the Internet of Things (IoT), transmitting sensing data back to the cloud for centralized data analysis will consume a lot of wireless communication and network transmission costs. To solve the above problems, edge computing has become a promising solution. In this paper, we propose a new algorithm for processing probabilistic skyline queries over uncertain data streams in an edge computing environment. We use the concept of a second skyline set to filter data that is unlikely to be the result of the skyline. Besides, the edge server only sends the information needed to update the global analysis results on the cloud server, which will greatly reduce the amount of data transmitted over the network. The results show that our proposed method not only reduces the response time by more than 50% compared with the brute force method on two-dimensional data but also maintains the leading processing speed on high-dimensional data.
KW - Edge Computing
KW - Internet of Things
KW - Probabilistic Skyline Query
KW - Uncertain Data Streams
UR - http://www.scopus.com/inward/record.url?scp=85101284326&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM42002.2020.9348055
DO - 10.1109/GLOBECOM42002.2020.9348055
M3 - Conference contribution
AN - SCOPUS:85101284326
T3 - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
BT - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Global Communications Conference, GLOBECOM 2020
Y2 - 7 December 2020 through 11 December 2020
ER -