Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning

Jiahui Guan, Lantian Yao, Chia Ru Chung, Peilin Xie, Yilun Zhang, Junyang Deng, Ying Chih Chiang*, Tzong Yi Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Inflammation is a biological response to harmful stimuli, aiding in the maintenance of tissue homeostasis. However, excessive or persistent inflammation can precipitate a myriad of pathological conditions. Although current treatments such as NSAIDs, corticosteroids, and immunosuppressants are effective, they can have side effects and resistance issues. In this backdrop, anti-inflammatory peptides (AIPs) have emerged as a promising therapeutic approach against inflammation. Leveraging machine learning methods, we have the opportunity to accelerate the discovery and investigation of these AIPs more effectively. In this study, we proposed an advanced framework by ensemble machine learning and deep learning for AIP prediction. Initially, we constructed three individual models with extremely randomized trees (ET), gated recurrent unit (GRU), and convolutional neural networks (CNNs) with attention mechanism and then used stacking architecture to build the final predictor. By utilizing various sequence encodings and combining the strengths of different algorithms, our predictor demonstrated exemplary performance. On our independent test set, our model achieved an accuracy, MCC, and F1-score of 0.757, 0.500, and 0.707, respectively, clearly outperforming other contemporary AIP prediction methods. Additionally, our model offers profound insights into the feature interpretation of AIPs, establishing a valuable knowledge foundation for the design and development of future anti-inflammatory strategies.

Original languageEnglish
Pages (from-to)7886-7898
Number of pages13
JournalJournal of Chemical Information and Modeling
Volume63
Issue number24
DOIs
StatePublished - 25 Dec 2023

Fingerprint

Dive into the research topics of 'Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning'. Together they form a unique fingerprint.

Cite this