Photonic hook generated by the Janus microcylinder under point-source illumination

Cheng Yang Liu*, Yu Bin Chen, Chuan Li, Wei Yu Chen, Shuo Chih Chien

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


A photonic hook (PH) is a high-intensity, curved focusing beam with a subwavelength waist based on the photonic nanojet effect. It is generally created by illuminating mesoscale transparent particles using optical plane waves. In this work, we numerically explore the generation of the PH supported by the Janus microcylinder under point-source illumination. To simulate the photonic intensity distributions near the shadow surface of the Janus microcylinder, a finite-difference time-domain technique is used. The power flow distributions near the Janus microcylinder are examined for working in the visible spectrum. Due to the asymmetric vortices of Poynting vectors, the PH with a large bending angle can be produced. By changing the location of the point-source illumination, the shape and curvature of the PH can be adjusted efficiently. Moreover, when the point-source illumination is located close to the Janus microcylinder, a long focal length PH can be present. Based on the numerical results, we propose a practical modeling scheme for optical imaging using a microscope where the light source is close to the target.

Original languageEnglish
Pages (from-to)2938-2944
Number of pages7
JournalJournal of the Optical Society of America B: Optical Physics
Issue number10
StatePublished - Oct 2021


Dive into the research topics of 'Photonic hook generated by the Janus microcylinder under point-source illumination'. Together they form a unique fingerprint.

Cite this