TY - JOUR
T1 - Performance Evaluation of a PET of 7T Bruker Micro-PET/MR Based on NEMA NU 4-2008 Standards
AU - Doss, Kishore Krishnagiri Manoj
AU - Mion, Pei En
AU - Kao, Yu Chieh Jill
AU - Kuo, Tsung Ter
AU - Chen, Jyh Cheng
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/7
Y1 - 2022/7
N2 - Purpose: This study aimed to measure the performance evaluation of the Bruker sequential micro-positron emission tomography/magnetic resonance imaging (PET/MRI) scanner by following National Electrical Manufacturers Association (NEMA) NU 4-2008 standards’ protocol. The system consists of a high-performance silicon photomultiplier (SiPM) advanced technology detector and a continuous lutetium-yttrium oxyorthosilicate (LYSO) crystal. Methods: A 22Na (sodium-22) point source was utilized to assess the spatial resolution and system sensitivity, and the Micro-PET scatter phantom measurements were conducted to measure count rate measurements and scatter fractions (SF). A mouse-like Micro-PET image quality (IQ) phantom was utilized as a model to analyze the uniformity, recovery coefficient (RC), and spillover ratio (SOR). A small animal PET/MRI imaging study was performed in a rat. Results: We calculated the spatial resolutions of filtered back-projection (FBP), and used 3D-MLEM to reconstruct PET images at the axial center and ¼ of the axial field of view (FOV) in axial, radial, and tangential directions. The best observed spatial resolutions in both reconstructed images were obtained in the tangential direction, and the values were 0.80 mm in 3D-MLEM and 0.94 mm in FBP. The peak noise equivalent count rate (NECR) in the 358–664 keV energy window was 477.30 kcps at 95.83 MBq and 774.45 kcps at 103.6 MBq for rat and mouse-sized scatter phantoms, respectively. The rat and mouse-sized phantoms scatter fractions (SF) were 14.2% and 6.9%, respectively. Conclusions: According to our results, the performance characteristics of the scanner are high sensitivity, good spatial resolution, low scatter fraction, and good IQ, indicating that it is suitable for preclinical imaging studies.
AB - Purpose: This study aimed to measure the performance evaluation of the Bruker sequential micro-positron emission tomography/magnetic resonance imaging (PET/MRI) scanner by following National Electrical Manufacturers Association (NEMA) NU 4-2008 standards’ protocol. The system consists of a high-performance silicon photomultiplier (SiPM) advanced technology detector and a continuous lutetium-yttrium oxyorthosilicate (LYSO) crystal. Methods: A 22Na (sodium-22) point source was utilized to assess the spatial resolution and system sensitivity, and the Micro-PET scatter phantom measurements were conducted to measure count rate measurements and scatter fractions (SF). A mouse-like Micro-PET image quality (IQ) phantom was utilized as a model to analyze the uniformity, recovery coefficient (RC), and spillover ratio (SOR). A small animal PET/MRI imaging study was performed in a rat. Results: We calculated the spatial resolutions of filtered back-projection (FBP), and used 3D-MLEM to reconstruct PET images at the axial center and ¼ of the axial field of view (FOV) in axial, radial, and tangential directions. The best observed spatial resolutions in both reconstructed images were obtained in the tangential direction, and the values were 0.80 mm in 3D-MLEM and 0.94 mm in FBP. The peak noise equivalent count rate (NECR) in the 358–664 keV energy window was 477.30 kcps at 95.83 MBq and 774.45 kcps at 103.6 MBq for rat and mouse-sized scatter phantoms, respectively. The rat and mouse-sized phantoms scatter fractions (SF) were 14.2% and 6.9%, respectively. Conclusions: According to our results, the performance characteristics of the scanner are high sensitivity, good spatial resolution, low scatter fraction, and good IQ, indicating that it is suitable for preclinical imaging studies.
KW - image quality
KW - performance evaluation
KW - positron emission tomography
UR - http://www.scopus.com/inward/record.url?scp=85137185478&partnerID=8YFLogxK
U2 - 10.3390/electronics11142194
DO - 10.3390/electronics11142194
M3 - Article
AN - SCOPUS:85137185478
SN - 2079-9292
VL - 11
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 14
M1 - 2194
ER -