TY - JOUR
T1 - Performance characterization of in-plane electro-thermally driven linear microactuators
AU - Lai, Yongjun
AU - Bordatchev, Evgueni V.
AU - Nikumb, Suwas K.
AU - Hsu, Wen-Syang
PY - 2006/10
Y1 - 2006/10
N2 - Static and dynamic electro-mechanical performance of a microactuator is a key factor in the functioning of an integrated microsystem composed of moving components such as optical shutters/switches, micropumps, microgrippers, and microvalves. Therefore, the development of such systems primarily focuses on the overall design and parameter optimization of an actuator as the major driving element with respect to the desired performance parameters, e.g., displacement, force, dimensional constraints, material, actuation principle, and method of fabrication. This study presents results on the static and dynamic electro-mechanical performance analysis of an in-plane electro-thermally driven linear microactuator. Each microactuator, having a width of 2220 mm and made of 25 mm thick nickel foil, consisted of a pair of cascaded structures. Connecting several actuation units in a series formed each cascaded structure. Several microactuators with a different number of actuation units were fabricated using the laser micromachining technology. The static performance of these microactuators was evaluated with respect to the maximum linear output displacements, actual resistance, applied current, and consumed electric power. The maximum displacements varied approximately from 3 to 44 mm, respectively, depending on the number of actuation units. The dynamic performance was studied as a response function on constant applied current with respect to the output displacements. In addition, the response time was evaluated for different applied currents and for actuators with 2, 4, and 6 actuation units. The microactuators' performance results are promising for applications in MEMS/MOEMS, microfluidic, and microrobotic devices.
AB - Static and dynamic electro-mechanical performance of a microactuator is a key factor in the functioning of an integrated microsystem composed of moving components such as optical shutters/switches, micropumps, microgrippers, and microvalves. Therefore, the development of such systems primarily focuses on the overall design and parameter optimization of an actuator as the major driving element with respect to the desired performance parameters, e.g., displacement, force, dimensional constraints, material, actuation principle, and method of fabrication. This study presents results on the static and dynamic electro-mechanical performance analysis of an in-plane electro-thermally driven linear microactuator. Each microactuator, having a width of 2220 mm and made of 25 mm thick nickel foil, consisted of a pair of cascaded structures. Connecting several actuation units in a series formed each cascaded structure. Several microactuators with a different number of actuation units were fabricated using the laser micromachining technology. The static performance of these microactuators was evaluated with respect to the maximum linear output displacements, actual resistance, applied current, and consumed electric power. The maximum displacements varied approximately from 3 to 44 mm, respectively, depending on the number of actuation units. The dynamic performance was studied as a response function on constant applied current with respect to the output displacements. In addition, the response time was evaluated for different applied currents and for actuators with 2, 4, and 6 actuation units. The microactuators' performance results are promising for applications in MEMS/MOEMS, microfluidic, and microrobotic devices.
KW - Electro-thermal actuation
KW - In-plane motions
KW - Laser fabrication
KW - Microactuator
KW - Static and dynamic electro-mechanical performance
UR - http://www.scopus.com/inward/record.url?scp=33746299863&partnerID=8YFLogxK
U2 - 10.1177/1045389X06061770
DO - 10.1177/1045389X06061770
M3 - Article
AN - SCOPUS:33746299863
SN - 1045-389X
VL - 17
SP - 919
EP - 929
JO - Journal of Intelligent Material Systems and Structures
JF - Journal of Intelligent Material Systems and Structures
IS - 10
ER -