Abstract
Cofilin-1, a non-muscle isoform of actin regulatory protein that belongs to the actin-depolymerizing factor (ADF)/cofilin family is known to affect cancer development. Previously, we found that over-expression of cofilin-1 suppressed the growth and invasion of human non-small cell lung cancer (NSCLC) cells in vitro. In this study, we further investigated whether over-expression of cofilin-1 can suppress tumor growth in vivo, and performed a microRNA array analysis to better understand whether specific microRNA would be involved in this event. The results showed that over-expression of cofilin-1 suppressed NSCLC tumor growth using the xenograft tumor model with the non-invasive reporter gene imaging modalities. Additionally, cell motility and invasion were significantly suppressed by over-expressed cofilin-1, and down-regulation of matrix metalloproteinase (MMPs) -1 and -3 was concomitantly detected. According to the microRNA array analysis, the let-7 family, particularly let-7b and let-7e, were apparently up-regulated among 248 microRNAs that were affected after over-expression of cofilin-1 up to 7. days. Knockdown of let-7b or let-7e using chemical locked nucleic acid (LNA) could recover the growth rate and the invasion of cofilin-1 over-expressing cells. Next, the expression of c-myc, LIN28 and Twist-1 proteins known to regulate let-7 were analyzed in cofilin-1 over-expressing cells, and Twist-1 was significantly suppressed under this condition. Up-regulation of let-7 microRNA by over-expressed cofilin-1 could be eliminated by co-transfected Twist-1 cDNA. Taken together, current data suggest that let-7 microRNA would be involved in over-expression of cofilin-1 mediated tumor suppression in vitro and in vivo.
Original language | English |
---|---|
Pages (from-to) | 851-861 |
Number of pages | 11 |
Journal | Biochimica et Biophysica Acta - Molecular Basis of Disease |
Volume | 1852 |
Issue number | 5 |
DOIs | |
State | Published - 1 May 2015 |
Keywords
- Cofilin-1
- Let-7 microRNA
- NSCLC
- Reporter gene imaging
- Xenograft tumor model