TY - GEN
T1 - Optimizing groundwater supply with land subsidence limit
AU - Chu, Hone Jay
AU - Hsiao, Chin Tsai
AU - Chang, Liang-Jeng
PY - 2007/12/1
Y1 - 2007/12/1
N2 - This work combines the Genetic Algorithm (GA) and Constrained Differential Dynamic Programming (CDDP) to solve the optimal pumping schedule and decreasing the environmental impact. The main structure of the hybrid algorithm is GA, in which each chromosome represents a possible network design and pumping wells expansion schedule. The fixed cost of each chromosome is computed easily by the GA. The CDDP then solves the optimal pumping scheme and, finally, evaluates the optimal operating costs associated with each chromosome. Simulation results indicate that under the same demand and annul interest rate, the capacity-expansion model has a lower total cost than the conventional design, which determines the system capacity initially. Furthermore, the land subsidence increases as total demand increases. The results further demonstrate that the proposed model is highly promising for use in facilitating a cost-efficiency design of well systems for regional groundwater supply and environmental preservation.
AB - This work combines the Genetic Algorithm (GA) and Constrained Differential Dynamic Programming (CDDP) to solve the optimal pumping schedule and decreasing the environmental impact. The main structure of the hybrid algorithm is GA, in which each chromosome represents a possible network design and pumping wells expansion schedule. The fixed cost of each chromosome is computed easily by the GA. The CDDP then solves the optimal pumping scheme and, finally, evaluates the optimal operating costs associated with each chromosome. Simulation results indicate that under the same demand and annul interest rate, the capacity-expansion model has a lower total cost than the conventional design, which determines the system capacity initially. Furthermore, the land subsidence increases as total demand increases. The results further demonstrate that the proposed model is highly promising for use in facilitating a cost-efficiency design of well systems for regional groundwater supply and environmental preservation.
KW - Constrained differential dynamic programming
KW - Genetic algorithm
KW - Ground water supply
KW - Land subsidence
UR - http://www.scopus.com/inward/record.url?scp=80051636958&partnerID=8YFLogxK
U2 - 10.1061/40927(243)194
DO - 10.1061/40927(243)194
M3 - Conference contribution
SN - 9780784409275
T3 - Restoring Our Natural Habitat - Proceedings of the 2007 World Environmental and Water Resources Congress
BT - Restoring Our Natural Habitat - Proceedings of the 2007 World Environmental and Water Resources Congress
T2 - 2007 World Environmental and Water Resources Congress: Restoring Our Natural Habitat
Y2 - 15 May 2007 through 19 May 2007
ER -