On the Mean Free Path for Backscattering in k(B)T Layer of Bulk Nano-MOSFETs

Ming-Jer Chen, Li-Fang Lu, Chih-Yu Hsu

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


We perform Monte Carlo particle simulations on a silicon conductor for the purposes of reexamining the channel backscattering in bulk nano-MOSFETs. The resulting mean free path lambda(0) for backscattering in a long and near-equilibrium conductor is constant, regardless of the potential profile. However, the apparent mean free path lambda(1) in a local quasi-ballistic k(B)T layer depends on the curvature of the potential profile. In a linear potential profile, the lambda(1) extracted in a wide range of the conductor length (15 to 100 nm) and lattice temperature (150 to 300 K) is found to fall below lambda(0). The carrier heating as the origin of reduced mean free path is inferred from the simulated carrier velocity distribution near the injection point. Strikingly, the mean free paths in a parabolic potential profile remain consistent: lambda(1) = lambda(0) This indicates the absence or weakening of the carrier heating in the layer of interest, valid only for the parabolic potential barrier.
Original languageEnglish
Pages (from-to)3594-3598
Number of pages5
JournalIEEE Transactions on Electron Devices
Issue number12
StatePublished - Dec 2008


  • Backscattering
  • Nanoscale devices


Dive into the research topics of 'On the Mean Free Path for Backscattering in k(B)T Layer of Bulk Nano-MOSFETs'. Together they form a unique fingerprint.

Cite this