TY - GEN
T1 - On the Compressibility of Affinely Singular Random Vectors
AU - Charusaie, Mohammad Amin
AU - Rini, Stefano
AU - Amini, Arash
N1 - Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/6
Y1 - 2020/6
N2 - The Renyi's information dimension (RID) of an n-dimensional random vector (RV) is the average dimension of the vector when accounting for non-zero probability measures over lower-dimensional subsets. From an information-theoretical perspective, the RID can be interpreted as a measure of compressibility of a probability distribution. While the RID for continuous and discrete measures is well understood, the case of a discrete-continuous measures presents a number of interesting subtleties. In this paper, we investigate the RID for a class of multi-dimensional discrete-continuous random measures with singularities on affine lower dimensional subsets. This class of RVs, which we term affinely singular, arises from linear transformation of orthogonally singular RVs, that include RVs with singularities on affine subsets parallel to principal axes. We obtain the RID of affinely singular RVs and derive an upper bound for the RID of Lipschitz functions of orthogonally singular RVs. As an application of our results, we consider the example of a moving-average stochastic process with discrete-continuous excitation noise and obtain the RID for samples of this process. We also provide insight about the relationship between the block-average information dimension of the truncated samples, the minimum achievable compression rate, and other measures of compressibility for this process.
AB - The Renyi's information dimension (RID) of an n-dimensional random vector (RV) is the average dimension of the vector when accounting for non-zero probability measures over lower-dimensional subsets. From an information-theoretical perspective, the RID can be interpreted as a measure of compressibility of a probability distribution. While the RID for continuous and discrete measures is well understood, the case of a discrete-continuous measures presents a number of interesting subtleties. In this paper, we investigate the RID for a class of multi-dimensional discrete-continuous random measures with singularities on affine lower dimensional subsets. This class of RVs, which we term affinely singular, arises from linear transformation of orthogonally singular RVs, that include RVs with singularities on affine subsets parallel to principal axes. We obtain the RID of affinely singular RVs and derive an upper bound for the RID of Lipschitz functions of orthogonally singular RVs. As an application of our results, we consider the example of a moving-average stochastic process with discrete-continuous excitation noise and obtain the RID for samples of this process. We also provide insight about the relationship between the block-average information dimension of the truncated samples, the minimum achievable compression rate, and other measures of compressibility for this process.
KW - Discrete-continuous Random Variables
KW - Information Dimension
KW - Moving-average Processes
KW - Rate-distortion Function
UR - http://www.scopus.com/inward/record.url?scp=85090423895&partnerID=8YFLogxK
U2 - 10.1109/ISIT44484.2020.9174417
DO - 10.1109/ISIT44484.2020.9174417
M3 - Conference contribution
AN - SCOPUS:85090423895
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2240
EP - 2245
BT - 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE International Symposium on Information Theory, ISIT 2020
Y2 - 21 July 2020 through 26 July 2020
ER -