On-chip pressure sensing by visualizing PDMS deformation using microbeads

Chia-Hung Tsai, Makoto Kaneko

Research output: Contribution to journalConference articlepeer-review

4 Scopus citations

Abstract

A novel pressure sensing technique based on visualizing Polydimethylsiloxane (PDMS) deformation using microbeads is proposed here for measuring local pressure inside a microfluidic device. By the proposed method, the pressure can be directly 'seen' without attaching any wire foils, such as a strain gauge, nor complex fabrication process, such as multilayer design or surface grating. Experimental results are shown and analyzed based on brightness value from captured images of microbeads pattern. The developed sensor is firstly calibrated by a commercial pressure sensor with feedback controlled syringe pump connected externally. According to the experimental results, the proposed sensing method is stable and repeatable in the steady state under dynamic pressure change, and the variation for the same given pressure from time to time is less than 1%. The correlation, R, between the pressure obtained from the proposed method and the reference pressure connected outside is up to 0.9953.

Original languageEnglish
Article number7051059
Pages (from-to)722-725
Number of pages4
JournalProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
Volume2015-February
Issue numberFebruary
DOIs
StatePublished - 26 Feb 2015
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: 18 Jan 201522 Jan 2015

Fingerprint

Dive into the research topics of 'On-chip pressure sensing by visualizing PDMS deformation using microbeads'. Together they form a unique fingerprint.

Cite this