On a Free Boundary Problem for the Curvature Flow with Driving Force

Jong Shenq Guo*, Hiroshi Matano, Masahiko Shimojo, Chang-Hong Wu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


We study a free boundary problem associated with the curvature dependent motion of planar curves in the upper half plane whose two endpoints slide along the horizontal axis with prescribed fixed contact angles. Our first main result concerns the classification of solutions; every solution falls into one of the three categories, namely, area expanding, area bounded and area shrinking types. We then study in detail the asymptotic behavior of solutions in each category. Among other things we show that solutions are asymptotically self-similar both in the area expanding and the area shrinking cases, while solutions converge to either a stationary solution or a traveling wave in the area bounded case. We also prove results on the concavity properties of solutions. One of the main tools of this paper is the intersection number principle, however in order to deal with solutions with free boundaries, we introduce what we call “the extended intersection number principle”, which turns out to be exceedingly useful in handling curves with moving endpoints.

Original languageEnglish
Pages (from-to)1207-1272
Number of pages66
JournalArchive for Rational Mechanics and Analysis
Issue number3
StatePublished - 1 Mar 2016


Dive into the research topics of 'On a Free Boundary Problem for the Curvature Flow with Driving Force'. Together they form a unique fingerprint.

Cite this