TY - GEN
T1 - Numerical analysis on hydraulic power take-off for wave energy converter and power smoothing methods
AU - Yu, Yi Hsiang
AU - Tom, Nathan
AU - Jenne, Dale
N1 - Publisher Copyright:
© Copyright 2018 ASME.
PY - 2018
Y1 - 2018
N2 - One of the primary challenges for wave energy converter (WEC) systems is the fluctuating nature of wave resources, which require the WEC components to be designed to handle loads (i.e., torques, forces, and powers) that are many times greater than the average load. This approach requires a much greater power take-off (PTO) capacity than the average power output and indicates a higher cost for the PTO. Moreover, additional design requirements, such as battery storage, are needed, particularly for practical electrical grid connection, and can be a problem for sensitive equipment (e.g., radar, computing devices, and sensors). Therefore, it is essential to investigate potential methodologies to reduce the overall power fluctuation while trying to optimize the power output from WECs. In this study, a detailed hydraulic PTO model was developed and coupled with a time-domain hydrodynamics model (WEC-Sim) to evaluate the PTO efficiency for WECs and the trade-off between power output and fluctuation using different power smoothing methods, including energy storage, pressure relief mechanism, and a powerbased setpoint control method. The study also revealed that the maximum power fluctuation for WECs can be significantly reduced by one order of magnitude when these power smoothing methods are applied.
AB - One of the primary challenges for wave energy converter (WEC) systems is the fluctuating nature of wave resources, which require the WEC components to be designed to handle loads (i.e., torques, forces, and powers) that are many times greater than the average load. This approach requires a much greater power take-off (PTO) capacity than the average power output and indicates a higher cost for the PTO. Moreover, additional design requirements, such as battery storage, are needed, particularly for practical electrical grid connection, and can be a problem for sensitive equipment (e.g., radar, computing devices, and sensors). Therefore, it is essential to investigate potential methodologies to reduce the overall power fluctuation while trying to optimize the power output from WECs. In this study, a detailed hydraulic PTO model was developed and coupled with a time-domain hydrodynamics model (WEC-Sim) to evaluate the PTO efficiency for WECs and the trade-off between power output and fluctuation using different power smoothing methods, including energy storage, pressure relief mechanism, and a powerbased setpoint control method. The study also revealed that the maximum power fluctuation for WECs can be significantly reduced by one order of magnitude when these power smoothing methods are applied.
KW - Hydraulic PTO
KW - Power take-off (PTO)
KW - Power-based setpoint control
KW - Renewable energy
KW - Wave energy converter
UR - http://www.scopus.com/inward/record.url?scp=85055411732&partnerID=8YFLogxK
U2 - 10.1115/OMAE2018-78176
DO - 10.1115/OMAE2018-78176
M3 - Conference contribution
AN - SCOPUS:85055411732
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Ocean Renewable Energy
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2018
Y2 - 17 June 2018 through 22 June 2018
ER -