Neural architecture search using progressive evolution

Nilotpal Sinha, Kuan Wen Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Vanilla neural architecture search using evolutionary algorithms (EA) involves evaluating each architecture by training it from scratch, which is extremely time-consuming. This can be reduced by using a supernet to estimate the fitness of every architecture in the search space due to its weight sharing nature. However, the estimated fitness is very noisy due to the co-adaptation of the operations in the supernet. In this work, we propose a method called pEvoNAS wherein the whole neural architecture search space is progressively reduced to smaller search space regions with good architectures. This is achieved by using a trained supernet for architecture evaluation during the architecture search using genetic algorithm to find search space regions with good architectures. Upon reaching the final reduced search space, the supernet is then used to search for the best architecture in that search space using evolution. The search is also enhanced by using weight inheritance wherein the supernet for the smaller search space inherits its weights from previous trained supernet for the bigger search space. Experimentally, pEvoNAS gives better results on CIFAR-10 and CIFAR-100 while using significantly less computational resources as compared to previous EA-based methods. The code for our paper can be found here.

Original languageEnglish
Title of host publicationGECCO 2022 - Proceedings of the 2022 Genetic and Evolutionary Computation Conference
PublisherAssociation for Computing Machinery, Inc
Pages1093-1101
Number of pages9
ISBN (Electronic)9781450392372
DOIs
StatePublished - 8 Jul 2022
Event2022 Genetic and Evolutionary Computation Conference, GECCO 2022 - Virtual, Online, United States
Duration: 9 Jul 202213 Jul 2022

Publication series

NameGECCO 2022 - Proceedings of the 2022 Genetic and Evolutionary Computation Conference

Conference

Conference2022 Genetic and Evolutionary Computation Conference, GECCO 2022
Country/TerritoryUnited States
CityVirtual, Online
Period9/07/2213/07/22

Keywords

  • Neural architecture search
  • genetic algorithm
  • supernet

Fingerprint

Dive into the research topics of 'Neural architecture search using progressive evolution'. Together they form a unique fingerprint.

Cite this