Multireference perturbation theory with optimized partitioning. I. Theoretical and computational aspects

Henryk A. Witek*, Haruyuki Nakano, Kimihiko Hirao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

A multireference perturbation method is formulated, that uses an optimized partitioning. The zeroth-order energies are chosen in a way that guarantees vanishing the first neglected term in the perturbational ansatz for the wave function, C(n) 50. This procedure yields a family of zeroth-order Hamiltonians that allows for systematic control of errors arising from truncating the perturbative expansion of the wave function. The second-order version of the proposed method, denoted as MROPT~2!, is shown to be ~almost! size-consistent. The slight extensivity violation is shown numerically. The total energies obtained with MROPT~2! are similar to these obtained using the multireference configuration interaction method with Davidson-type corrections. We discuss connections of the MROPT~2! method to related approaches, the optimized partitioning introduced by Szabados and Surja´n and the linearized multireference coupled-cluster method. The MROPT~2! method requires using state-optimized orbitals; we show on example of N2 that using Hartree–Fock orbitals for some excited states may lead to nonphysical results.

Original languageEnglish
Pages (from-to)8197-8206
Number of pages10
JournalJournal of Chemical Physics
Volume118
Issue number18
DOIs
StatePublished - 8 May 2003

Fingerprint

Dive into the research topics of 'Multireference perturbation theory with optimized partitioning. I. Theoretical and computational aspects'. Together they form a unique fingerprint.

Cite this