Abstract
A photonic crystal (PC) surface is demonstrated as a high-sensitivity platform for detection of a panel of 21 cancer biomarker antigens using a sandwich enzyme-linked immunosorbent assay (ELISA) microarray format. A quartz-based PC structure fabricated by nanoimprint lithography, selected for its low autofluorescence, supports two independent optical resonances that simultaneously enable enhancement of fluorescence detection of biomarkers and label-free quantification of the density of antibody capture spots. A detection instrument is demonstrated that supports fluorescence and label-free imaging modalities, with the ability to optimize the fluorescence enhancement factor on a pixel-by-pixel basis throughout the microarray using an angle-scanning approach for the excitation laser that automatically compensates for variability in surface chemistry density and capture spot density. Measurements show that the angle-scanning illumination approach reduces the coefficient of variation of replicate assays by 20-99% compared to ordinary fluorescence microscopy, thus supporting reduction in limits of detectable biomarker concentration. Using the PC resonance, biomarkers in mixed samples were detectable at the lowest concentrations tested (2.1-41 pg/mL), resulting in a three-log range of quantitative detection.
Original language | English |
---|---|
Pages (from-to) | 1126-1133 |
Number of pages | 8 |
Journal | Analytical chemistry |
Volume | 84 |
Issue number | 2 |
DOIs | |
State | Published - 17 Jan 2012 |