TY - JOUR
T1 - Multihop cellular
T2 - From research to systems, standards, and applications [Guest Editorial]
AU - Lin, Ying-Dar
AU - Hsu, Yu Ching
AU - Chattterjee, Mainak
AU - Kunz, Thomas
PY - 2014/1/1
Y1 - 2014/1/1
N2 - It has been more than a decade since the multihop cellular network (MCN) architecture was first proposed and analyzed in 2000 [1]. As the transmission range decreases k times, the number of simultaneous transmissions and hop count increase by k2 times and k times, respectively, which leads to k times cellular capacity increase. Fundamental research projects have demonstrated the benefits of MCN in terms of system capacity, service coverage, and network connectivity. Many special issues have been devoted to this stream of research [2-6]. The actual concept behind the MCN architecture could be regarded as a hybrid of mobile ad hoc networks (MANETs) and cellular networks. This concept of relaying within a cell also pushed standard bodies to consider solutions embedded with mesh or ad hoc architectures, such as IEEE 802.11s [7], IEEE 802.15.5 [8], and IEEE 802.16j [9]. Now, in the recent standards of the Third Generation Partnership Project (3GPP), Proximity-Based Services (ProSe) [10, 11] related work items also cover the MCN concept. In addition to device-to-device (D2D) direct communications, user equipment (UE)-UE relay and UE-network relay are also supported features. Both infrastructural and infrastructureless architectures are considered. Among many use cases, the most urgent one is public safety. These show that MCN architecture realization is ongoing.
AB - It has been more than a decade since the multihop cellular network (MCN) architecture was first proposed and analyzed in 2000 [1]. As the transmission range decreases k times, the number of simultaneous transmissions and hop count increase by k2 times and k times, respectively, which leads to k times cellular capacity increase. Fundamental research projects have demonstrated the benefits of MCN in terms of system capacity, service coverage, and network connectivity. Many special issues have been devoted to this stream of research [2-6]. The actual concept behind the MCN architecture could be regarded as a hybrid of mobile ad hoc networks (MANETs) and cellular networks. This concept of relaying within a cell also pushed standard bodies to consider solutions embedded with mesh or ad hoc architectures, such as IEEE 802.11s [7], IEEE 802.15.5 [8], and IEEE 802.16j [9]. Now, in the recent standards of the Third Generation Partnership Project (3GPP), Proximity-Based Services (ProSe) [10, 11] related work items also cover the MCN concept. In addition to device-to-device (D2D) direct communications, user equipment (UE)-UE relay and UE-network relay are also supported features. Both infrastructural and infrastructureless architectures are considered. Among many use cases, the most urgent one is public safety. These show that MCN architecture realization is ongoing.
UR - http://www.scopus.com/inward/record.url?scp=84908663973&partnerID=8YFLogxK
U2 - 10.1109/MWC.2014.6940428
DO - 10.1109/MWC.2014.6940428
M3 - Editorial
AN - SCOPUS:84908663973
SN - 1536-1284
VL - 21
SP - 12
EP - 13
JO - IEEE Wireless Communications
JF - IEEE Wireless Communications
IS - 5
M1 - 6940420
ER -