TY - JOUR
T1 - Multifunctional magnetically removable nanogated lids of Fe 3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging
AU - Chen, Po Jung
AU - Hu, Shang Hsiu
AU - Hsiao, Chi Sheng
AU - Chen, You Yin
AU - Liu, Dean Mo
AU - Chen, San Yuan
PY - 2011/2/28
Y1 - 2011/2/28
N2 - In this study, a novel nanocarrier (MSN@Fe3O4) is constructed using a facile technology by capping mesoporous silica nanoparticles (MSN) with monodispersed Fe3O4 nanoparticles through chemical bonding. The chemical links provide adhesion, which permits the magnetic nanoparticles, as nano-caps, to efficiently cover the mesoporous pores on the mesoporous silica matrix and be tightly bonded with the matrix surface. Without magnetic stimulus, none or only a negligible amount of the drug can be released from the MSN@Fe3O4. However, when subjected to an external controllable magnetic field, a quantity of nano-caps can be remotely and precisely removed, giving tunable release profiles for an anticancer drug, (S)-(+)-camptothecin (CPT), with various dosages depending upon the strength and time period of magnetic induction. The transverse relaxivity (r2) of the MSN@Fe3O4 nanocarriers was measured to be about 121.57 s-1mM-1 Fe, which is larger than that for the reported mesoporous silica nanoparticles decorated with magnetite nanocrystals. Therefore, MSN@Fe3O4 nanocarriers could perform well as T2- type MR contrast enhancement agents for cell or molecular imaging. In addition, the MSN@Fe3O4 nanocarriers also demonstrate fairly high cell uptake efficiency. Together with its versatile magnetic manipulation, this new type of MSN@Fe3O4 nanosystem can be considered as a new class of multifunctional nanodevice, with combined tunable drug release and nanoimaging modalities for a variety of biomedical uses.
AB - In this study, a novel nanocarrier (MSN@Fe3O4) is constructed using a facile technology by capping mesoporous silica nanoparticles (MSN) with monodispersed Fe3O4 nanoparticles through chemical bonding. The chemical links provide adhesion, which permits the magnetic nanoparticles, as nano-caps, to efficiently cover the mesoporous pores on the mesoporous silica matrix and be tightly bonded with the matrix surface. Without magnetic stimulus, none or only a negligible amount of the drug can be released from the MSN@Fe3O4. However, when subjected to an external controllable magnetic field, a quantity of nano-caps can be remotely and precisely removed, giving tunable release profiles for an anticancer drug, (S)-(+)-camptothecin (CPT), with various dosages depending upon the strength and time period of magnetic induction. The transverse relaxivity (r2) of the MSN@Fe3O4 nanocarriers was measured to be about 121.57 s-1mM-1 Fe, which is larger than that for the reported mesoporous silica nanoparticles decorated with magnetite nanocrystals. Therefore, MSN@Fe3O4 nanocarriers could perform well as T2- type MR contrast enhancement agents for cell or molecular imaging. In addition, the MSN@Fe3O4 nanocarriers also demonstrate fairly high cell uptake efficiency. Together with its versatile magnetic manipulation, this new type of MSN@Fe3O4 nanosystem can be considered as a new class of multifunctional nanodevice, with combined tunable drug release and nanoimaging modalities for a variety of biomedical uses.
UR - http://www.scopus.com/inward/record.url?scp=79751482942&partnerID=8YFLogxK
U2 - 10.1039/c0jm02590a
DO - 10.1039/c0jm02590a
M3 - Article
AN - SCOPUS:79751482942
SN - 0959-9428
VL - 21
SP - 2535
EP - 2543
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
IS - 8
ER -