TY - JOUR
T1 - Multi-omics models for predicting prognosis in non-small cell lung cancer patients following chemotherapy and radiotherapy
T2 - A multi-center study
AU - Pan, Yuteng
AU - Shi, Liting
AU - Liu, Yuan
AU - Chen, Jyh cheng
AU - Qiu, Jianfeng
N1 - Publisher Copyright:
© 2025 Elsevier B.V.
PY - 2025/3
Y1 - 2025/3
N2 - Background and purpose: Quantifying tumor heterogeneity from various dimensions is crucial for precise treatment. This study aimed to develop and validate multi-omics models based on the computed tomography images, pathological images, dose and clinical information to predict treatment response and overall survival of non-small cell lung cancer (NSCLC) patients undergoing chemotherapy and radiotherapy. Materials and methods: This retrospective study included 220 NSCLC patients from three centers. Following feature extraction and selection, single-omics and multi-omics models were built for treatment response and overall survival prediction. The performance of treatment response models was evaluated using the area under the curve (AUC) and box plots. For overall survival analysis, the model's evaluation included AUC, concordance index (C-index), Kaplan-Meier curves, and calibration curves. Shapley values were used to assess the contribution of different features to multi-omics models. Results: Multi-omics models consistently exhibited superior discriminative ability compared to single-omics models in predicting both treatment response and overall survival. For treatment response, the three all-modality models achieved AUC values of 0.87, 0.91, and 0.82 in the external validation set, respectively. In overall survival analysis, the three all-modality models demonstrated AUC values and C-index of 0.73/0.72, 0.80/0.77, 0.79/0.78 in the external validation set, respectively. Conclusion: Multi-omics prediction models demonstrated superior predictive ability with robustness and interpretability. By predicting treatment response and overall survival in NSCLC patients, these models have the potential to assist clinician optimizing treatment plans, supporting individualized treatment strategies, improving the tumor control probability and prolonging the patients’ survival.
AB - Background and purpose: Quantifying tumor heterogeneity from various dimensions is crucial for precise treatment. This study aimed to develop and validate multi-omics models based on the computed tomography images, pathological images, dose and clinical information to predict treatment response and overall survival of non-small cell lung cancer (NSCLC) patients undergoing chemotherapy and radiotherapy. Materials and methods: This retrospective study included 220 NSCLC patients from three centers. Following feature extraction and selection, single-omics and multi-omics models were built for treatment response and overall survival prediction. The performance of treatment response models was evaluated using the area under the curve (AUC) and box plots. For overall survival analysis, the model's evaluation included AUC, concordance index (C-index), Kaplan-Meier curves, and calibration curves. Shapley values were used to assess the contribution of different features to multi-omics models. Results: Multi-omics models consistently exhibited superior discriminative ability compared to single-omics models in predicting both treatment response and overall survival. For treatment response, the three all-modality models achieved AUC values of 0.87, 0.91, and 0.82 in the external validation set, respectively. In overall survival analysis, the three all-modality models demonstrated AUC values and C-index of 0.73/0.72, 0.80/0.77, 0.79/0.78 in the external validation set, respectively. Conclusion: Multi-omics prediction models demonstrated superior predictive ability with robustness and interpretability. By predicting treatment response and overall survival in NSCLC patients, these models have the potential to assist clinician optimizing treatment plans, supporting individualized treatment strategies, improving the tumor control probability and prolonging the patients’ survival.
KW - Dosiomics
KW - Non-small cell lung cancer
KW - Overall survival
KW - Pathomics
KW - Radiomics
KW - Treatment response
UR - http://www.scopus.com/inward/record.url?scp=85214825244&partnerID=8YFLogxK
U2 - 10.1016/j.radonc.2025.110715
DO - 10.1016/j.radonc.2025.110715
M3 - Article
C2 - 39800269
AN - SCOPUS:85214825244
SN - 0167-8140
VL - 204
JO - Radiotherapy and Oncology
JF - Radiotherapy and Oncology
M1 - 110715
ER -