Multi-modal Motion Prediction using Temporal Ensembling with Learning-based Aggregation

Kai Yin Hong*, Chieh Chih Wang, Wen Chieh Lin

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent years have seen a shift towards learning-based methods for trajectory prediction, with challenges remaining in addressing uncertainty and capturing multi-modal distributions. This paper introduces Temporal Ensembling with Learning-based Aggregation, a meta-algorithm designed to mitigate the issue of missing behaviors in trajectory prediction, which leads to inconsistent predictions across consecutive frames. Unlike conventional model ensembling, temporal ensembling leverages predictions from nearby frames to enhance spatial coverage and prediction diversity. By confirming predictions from multiple frames, temporal ensembling compensates for occasional errors in individual frame predictions. Furthermore, trajectory-level aggregation, often utilized in model ensembling, is insufficient for temporal ensembling due to a lack of consideration of traffic context and its tendency to assign candidate trajectories with incorrect driving behaviors to final predictions. We further emphasize the necessity of learning-based aggregation by utilizing mode queries within a DETR-like architecture for our temporal ensembling, leveraging the characteristics of predictions from nearby frames. Our method, validated on the Argoverse 2 dataset, shows notable improvements: a 4% reduction in minADE, a 5% decrease in minFDE, and a 1.16% reduction in the miss rate compared to the strongest baseline, QCNet, highlighting its efficacy and potential in autonomous driving.

Original languageEnglish
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9691-9697
Number of pages7
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: 14 Oct 202418 Oct 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period14/10/2418/10/24

Keywords

  • Autonomous driving
  • DETR
  • ensembling
  • multi-modal motion prediction

Fingerprint

Dive into the research topics of 'Multi-modal Motion Prediction using Temporal Ensembling with Learning-based Aggregation'. Together they form a unique fingerprint.

Cite this