TY - JOUR
T1 - Molecular evolution in the Drosophila melanogaster species subgroup
T2 - Frequent parameter fluctuations on the timescale of molecular divergence
AU - Akashi, Hiroshi
AU - Ko, Wen Ya
AU - Piao, Shengfu
AU - John, Anoop
AU - Goel, Piyush
AU - Lin, Chiao Feng
AU - Vitins, Alexa P.
PY - 2006/3
Y1 - 2006/3
N2 - Although mutation, genetic drift, and natural selection are well established as determinants of genome evolution, the importance (frequency and magnitude) of parameter fluctuations in molecular evolution is less understood. DNA sequence comparisons among closely related species allow specific substitutions to be assigned to lineages on a phylogenetic tree. In this study, we compare patterns of codon usage and protein evolution in 22 genes (>11,000 codons) among Drosophila melanogaster and five relatives within the D. melanogaster subgroup. We assign changes to eight lineages using a maximum-likelihood approach to infer ancestral states. Uncertainty in ancestral reconstructions is taken into account, at least to some extent, by weighting reconstructions by their posterior probabilities. Four of the eight lineages show potentially genomewide departures from equilibrium synonymous codon usage; three are decreasing and one is increasing in major codon usage. Several of these departures are consistent with lineage-specific changes in selection intensity (selection coefficients scaled to effective population size) at silent sites. Intron base composition and rates and patterns of protein evolution are also heterogeneous among these lineages. The magnitude of forces governing silent, intron, and protein evolution appears to have varied frequently, and in a lineage-specific manner, within the D. melanogaster subgroup.
AB - Although mutation, genetic drift, and natural selection are well established as determinants of genome evolution, the importance (frequency and magnitude) of parameter fluctuations in molecular evolution is less understood. DNA sequence comparisons among closely related species allow specific substitutions to be assigned to lineages on a phylogenetic tree. In this study, we compare patterns of codon usage and protein evolution in 22 genes (>11,000 codons) among Drosophila melanogaster and five relatives within the D. melanogaster subgroup. We assign changes to eight lineages using a maximum-likelihood approach to infer ancestral states. Uncertainty in ancestral reconstructions is taken into account, at least to some extent, by weighting reconstructions by their posterior probabilities. Four of the eight lineages show potentially genomewide departures from equilibrium synonymous codon usage; three are decreasing and one is increasing in major codon usage. Several of these departures are consistent with lineage-specific changes in selection intensity (selection coefficients scaled to effective population size) at silent sites. Intron base composition and rates and patterns of protein evolution are also heterogeneous among these lineages. The magnitude of forces governing silent, intron, and protein evolution appears to have varied frequently, and in a lineage-specific manner, within the D. melanogaster subgroup.
UR - http://www.scopus.com/inward/record.url?scp=33645213545&partnerID=8YFLogxK
U2 - 10.1534/genetics.105.049676
DO - 10.1534/genetics.105.049676
M3 - Article
C2 - 16387879
AN - SCOPUS:33645213545
SN - 0016-6731
VL - 172
SP - 1711
EP - 1726
JO - Genetics
JF - Genetics
IS - 3
ER -