TY - JOUR
T1 - Modeling complex responses of FM-sensitive cells in the auditory midbrain using a committee machine
AU - Chang, T. R.
AU - Chiu, Tzai-Wen
AU - Sun, X.
AU - Poon, Paul W F
PY - 2013/11/6
Y1 - 2013/11/6
N2 - Frequency modulation (FM) is an important building block of complex sounds that include speech signals. Exploring the neural mechanisms of FM coding with computer modeling could help understand how speech sounds are processed in the brain. Here, we modeled the single unit responses of auditory neurons recorded from the midbrain of anesthetized rats. These neurons displayed spectral temporal receptive fields (STRFs) that had multiple-trigger features, and were more complex than those with single-trigger features. Their responses have not been modeled satisfactorily with simple artificial neural networks, unlike neurons with simple-trigger features. To improve model performance, here we tested an approach with the committee machine. For a given neuron, the peri-stimulus time histogram (PSTH) was first generated in response to a repeated random FM tone, and peaks in the PSTH were segregated into groups based on the similarity of their pre-spike FM trigger features. Each group was then modeled using an artificial neural network with simple architecture, and, when necessary, by increasing the number of neurons in the hidden layer. After initial training, the artificial neural networks with their optimized weighting coefficients were pooled into a committee machine for training. Finally, the model performance was tested by prediction of the response of the same cell to a novel FM tone. The results showed improvement over simple artificial neural networks, supporting that trigger-feature-based modeling can be extended to cells with complex responses. This article is part of a Special Issue entitled Neural Coding 2012. This article is part of a Special Issue entitled Neural Coding 2012.
AB - Frequency modulation (FM) is an important building block of complex sounds that include speech signals. Exploring the neural mechanisms of FM coding with computer modeling could help understand how speech sounds are processed in the brain. Here, we modeled the single unit responses of auditory neurons recorded from the midbrain of anesthetized rats. These neurons displayed spectral temporal receptive fields (STRFs) that had multiple-trigger features, and were more complex than those with single-trigger features. Their responses have not been modeled satisfactorily with simple artificial neural networks, unlike neurons with simple-trigger features. To improve model performance, here we tested an approach with the committee machine. For a given neuron, the peri-stimulus time histogram (PSTH) was first generated in response to a repeated random FM tone, and peaks in the PSTH were segregated into groups based on the similarity of their pre-spike FM trigger features. Each group was then modeled using an artificial neural network with simple architecture, and, when necessary, by increasing the number of neurons in the hidden layer. After initial training, the artificial neural networks with their optimized weighting coefficients were pooled into a committee machine for training. Finally, the model performance was tested by prediction of the response of the same cell to a novel FM tone. The results showed improvement over simple artificial neural networks, supporting that trigger-feature-based modeling can be extended to cells with complex responses. This article is part of a Special Issue entitled Neural Coding 2012. This article is part of a Special Issue entitled Neural Coding 2012.
UR - http://www.scopus.com/inward/record.url?scp=84887174868&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2013.04.058
DO - 10.1016/j.brainres.2013.04.058
M3 - Article
C2 - 23665390
AN - SCOPUS:84887174868
SN - 0006-8993
VL - 1536
SP - 44
EP - 52
JO - Brain Research
JF - Brain Research
ER -