Abstract
Acomputationally efficient finite element simulation is performed to calculate the miniband structure and DoSs for the well-ordered Ge/Si-nanodisk array. The semiconductor nanostructures are fabricated by using self-assemble bio-template and damage-free NBE technique. Within the envelop-function framework, our model surmounts theoretical approximations of the multidimensional Kronig-Penney method and accurately calculates the energy dispersion relationship. The miniband formation works as the intermediate band within the bandgap of bulk silicon band. Effects of the interdot space, the radius and thickness of the Ge/Si-nanodisk on the miniband structure, and conversion efficiency of the solar cell (SC) are discussed. The findings of this study provide a guideline for 3D QDs IBSC design.
Original language | English |
---|---|
Title of host publication | Green Photonics and Smart Photonics |
Publisher | River Publishers |
Pages | 25-46 |
Number of pages | 22 |
ISBN (Electronic) | 9788793379268 |
ISBN (Print) | 9788793379275 |
State | Published - 15 Aug 2016 |
Keywords
- FEM
- Ge/Si-Nanodisk array
- IBSC