Model Compression via Structural Pruning and Feature Distillation for Accurate Multi-Spectral Object Detection on Edge-Devices

Egor Poliakov, Van Tin Luu, Vu Hoang Tran, Ching Chun Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Multi-spectral infrared object detection across different infrared wavelengths is a challenging task. Although some full-sized object detection models, such as YOLOv4 and ScaledYOLO, may achieve good infrared object detection, they are resource-demanding and unsuitable for real-time detection on edge devices. Tiny versions for object detection are proposed to meet the practical requirement, but they usually sacrifice model accuracy and generalization for efficiency. We propose an accurate and efficient object detector capable of performing real-time inference under the hardware constraints of an edge device by leveraging structural pruning, feature distillation, and neural architecture search (NAS). The experiments on FLIR and multi-spectral object detection datasets show that our model achieves comparable mAP to full-sized models while having 14x times fewer parameters and 3.5x times fewer FLOPs. Our model can perform infrared detection well across different infrared wavelengths. The optimal CSPNet configurations of our detection network selected by NAS show that the resulting architectures outperform the baseline.

Original languageEnglish
Title of host publicationICME 2022 - IEEE International Conference on Multimedia and Expo 2022, Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9781665485630
DOIs
StatePublished - 2022
Event2022 IEEE International Conference on Multimedia and Expo, ICME 2022 - Taipei, Taiwan
Duration: 18 Jul 202222 Jul 2022

Publication series

NameProceedings - IEEE International Conference on Multimedia and Expo
Volume2022-July
ISSN (Print)1945-7871
ISSN (Electronic)1945-788X

Conference

Conference2022 IEEE International Conference on Multimedia and Expo, ICME 2022
Country/TerritoryTaiwan
CityTaipei
Period18/07/2222/07/22

Keywords

  • Cross Stage Partial Network (CSPNet)
  • infrared image
  • model compression
  • neural architecture search
  • object detection

Fingerprint

Dive into the research topics of 'Model Compression via Structural Pruning and Feature Distillation for Accurate Multi-Spectral Object Detection on Edge-Devices'. Together they form a unique fingerprint.

Cite this