TY - JOUR
T1 - Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dots
AU - Gu, Siyong
AU - Hsieh, Chien Te
AU - Ashraf Gandomi, Yasser
AU - Chang, Jeng-Kuei
AU - Li, Ju
AU - Li, Jianlin
AU - Zhang, Houan
AU - Guo, Qing
AU - Lau, Kah Chun
AU - Pandey, Ravindra
N1 - Publisher Copyright:
© 2019 The Royal Society of Chemistry.
PY - 2019
Y1 - 2019
N2 - Tunable photoluminescent nitrogen-doped graphene and graphitic carbon nitride (g-C3N4) quantum dots are synthesized via a facile solid-phase microwave-assisted (SPMA) technique utilizing the pyrolysis of citric acid and urea precursors. The atomic ratio, surface functionalization, and atomic structure of as-prepared quantum dots strongly depend on the ratio of citric acid to urea. The quantum dots have a homogeneous particle size and tend to form a circle and/or ellipse shape to minimize the edge free energy. The atomic ratio of surface nitrogen to carbon (N/C) in the quantum dots can reach as high as 1.74, among the highest values reported in the literature. The SPMA technique is capable of producing high-quality quantum dots with photoluminescence (PL) emission at various wavelengths on a pilot scale. The atomic structures of the N-doped graphene and g-C3N4 quantum dots are explored using molecular dynamics simulations. Increasing the urea concentration increases the tendency of in-plane N (i.e., quaternary N) substitution over that of other amino functionalizations, such as pyrrolic and pyridinic N. The PL emission can be precisely tuned via a one-step SPMA method by adjusting the precursor composition. A high quantum yield of 38.7% is achieved with N-doped graphene quantum dots, indicating the substantial influence of the N- and O-rich edge groups on the enhancement of PL efficiency. A bandgap structure is proposed to describe the interstate (π∗-π) transition of quantum dots. This work introduces a novel approach for engineering the chemical composition and atomic structure of graphene and g-C3N4 quantum dots, facilitating their research and applications in optical, electronic, and biomedical devices.
AB - Tunable photoluminescent nitrogen-doped graphene and graphitic carbon nitride (g-C3N4) quantum dots are synthesized via a facile solid-phase microwave-assisted (SPMA) technique utilizing the pyrolysis of citric acid and urea precursors. The atomic ratio, surface functionalization, and atomic structure of as-prepared quantum dots strongly depend on the ratio of citric acid to urea. The quantum dots have a homogeneous particle size and tend to form a circle and/or ellipse shape to minimize the edge free energy. The atomic ratio of surface nitrogen to carbon (N/C) in the quantum dots can reach as high as 1.74, among the highest values reported in the literature. The SPMA technique is capable of producing high-quality quantum dots with photoluminescence (PL) emission at various wavelengths on a pilot scale. The atomic structures of the N-doped graphene and g-C3N4 quantum dots are explored using molecular dynamics simulations. Increasing the urea concentration increases the tendency of in-plane N (i.e., quaternary N) substitution over that of other amino functionalizations, such as pyrrolic and pyridinic N. The PL emission can be precisely tuned via a one-step SPMA method by adjusting the precursor composition. A high quantum yield of 38.7% is achieved with N-doped graphene quantum dots, indicating the substantial influence of the N- and O-rich edge groups on the enhancement of PL efficiency. A bandgap structure is proposed to describe the interstate (π∗-π) transition of quantum dots. This work introduces a novel approach for engineering the chemical composition and atomic structure of graphene and g-C3N4 quantum dots, facilitating their research and applications in optical, electronic, and biomedical devices.
UR - http://www.scopus.com/inward/record.url?scp=85065642963&partnerID=8YFLogxK
U2 - 10.1039/c9tc00233b
DO - 10.1039/c9tc00233b
M3 - Article
AN - SCOPUS:85065642963
SN - 2050-7534
VL - 7
SP - 5468
EP - 5476
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
IS - 18
ER -