Abstract
CKD is an independent risk factor for cardiovascular disease (CVD). The accumulation of uremic toxins in CKD induces oxidative stress and endothelial dysfunction. MicroRNA-92a (miR-92a) is induced by oxidative stress in endothelial cells (ECs) and involved in angiogenesis and atherosclerosis. We investigated a role for oxidative stress responsive miR-92a in CKD. Our study of patients at three clinical sites showed increased serum miR-92a level with decreased kidney function. In cultured ECs, human CKD serum or uremic toxins (such as indoxyl sulfate), compared with non-CKD serum, induced the levels of miR-92a and suppressed the expression of miR-92a targets, including key endothelial-protective molecules. The antioxidant N-acetylcysteine inhibited these vasculopathic properties. In rats, adenine-induced CKD associated with increased levels of miR-92a in aortas, serum, and CD144(+) endothelial microparticles. Furthermore, CD144(+) microparticles from human uremic serum contained more miR-92a than those from control serum. Additional analysis showed a positive correlation between serum levels of miR-92a and indoxyl sulfate in a cohort of patients with ESRD undergoing hemodialysis. Collectively, our findings suggest that the uremic toxins accumulated in CKD can upregulate miR-92a in ECs, which impairs EC function and predisposes patients to CVD.
Original language | English |
---|---|
Pages (from-to) | 3250-3260 |
Number of pages | 11 |
Journal | Journal of the American Society of Nephrology |
Volume | 28 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2017 |
Keywords
- CHRONIC KIDNEY-DISEASE; ALL-CAUSE MORTALITY; P-CRESYL SULFATE; INDOXYL SULFATE; CONTROLS ANGIOGENESIS; OXIDATIVE STRESS; RENAL-FAILURE; MICROPARTICLES; ATHEROSCLEROSIS; PROLIFERATION