MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity

Yi Fen Chen, Cheng Chieh Yang, Shou Yen Kao, Chung Ji Liu, Shu Chun Lin, Kuo Wei Chang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

84 Scopus citations

Abstract

miR-211 expression in human oral squamous cell carcinoma (OSCC) has been implicated in poor patient survival. To investigate the oncogenic roles of miR-211, we generated K14-EGFP-miR-211 transgenic mice tagged with GFP. Induction of oral carcinogenesis in transgenic mice using 4-nitroquinoline 1-oxide (4NQO) resulted in more extensive and severe tongue tumorigenesis compared with control animals. We found that 4NQO and arecoline upregulated miR-211 expression in OSCC cells. In silico and experimental evidence further revealed that miR-211 directly targeted transcription factor 12(TCF12), which mediated suppressor activities in OSCC cells and was drastically downregulated in tumor tissues. We used GeneChip analysis and bioinformatic algorithms to identify transcriptional targets of TCF12 and confirmed through reporter and ChIP assays that family with sequence similarity 213, member A (FAM213A), a peroxiredoxin-like antioxidative protein, was repressed transcriptionally by TCF12. FAM213A silencing in OSCC cells diminished oncogenic activity, reduced the ALDH1-positive cell population, and increased reactive oxygen species. TCF12 and FAM213A expression was correlated inversely in head and neck carcinoma samples according to The Cancer Genome Atlas. OSCC patients bearing tumors with high FAM213A expression tended to have worse survival. Furthermore, 4NQO treatment downregulated TCF12 and upregulated FAM213A by modulating miR-211 both in vitro and in vivo. Overall, our findings develop a mouse model that recapitulates the molecular and histopathologic alterations of human OSCC pathogenesis and highlight a new miRNA-mediated oncogenic mechanism.

Original languageEnglish
Pages (from-to)4872-4886
Number of pages15
JournalCancer Research
Volume76
Issue number16
DOIs
StatePublished - 15 Aug 2016

Fingerprint

Dive into the research topics of 'MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity'. Together they form a unique fingerprint.

Cite this