Methodology for realizing VMM with binary RRAM arrays: Experimental demonstration of binarized-adaline using oxram crossbar

Sandeep Kaur Kingra, Vivek Parmar, Shubham Negi, Sufyan Khan, Boris Hudec, Tuo Hung Hou, Manan Suri*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

In this paper, we present an efficient hardware mapping methodology for realizing vector matrix multiplication (VMM) on resistive memory (RRAM) arrays. Using the proposed VMM computation technique, we experimentally demonstrate a binarized-ADALINE (Adaptive Linear) classifier on an OxRAM crossbar. An 8×8 OxRAM crossbar with Ni/3-nm HfO2/7 nm Al-doped-TiO2/TiN device stack is used. Weight training for the binarized-ADALINE classifier is performed ex-situ on UCI cancer dataset. Post weight generation the OxRAM array is carefully programmed to binary weight-states using the proposed weight mapping technique on a custom-built testbench. Our VMM powered binarized-ADALINE network achieves a classification accuracy of 78% in simulation and 67% in experiments. Experimental accuracy was found to drop mainly due to crossbar inherent sneak-path issues and RRAM device programming variability.

Original languageEnglish
Title of host publication2020 IEEE International Symposium on Circuits and Systems, ISCAS 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728133201
DOIs
StatePublished - 2020
Event52nd IEEE International Symposium on Circuits and Systems, ISCAS 2020 - Virtual, Online
Duration: 10 Oct 202021 Oct 2020

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2020-October
ISSN (Print)0271-4310

Conference

Conference52nd IEEE International Symposium on Circuits and Systems, ISCAS 2020
CityVirtual, Online
Period10/10/2021/10/20

Fingerprint

Dive into the research topics of 'Methodology for realizing VMM with binary RRAM arrays: Experimental demonstration of binarized-adaline using oxram crossbar'. Together they form a unique fingerprint.

Cite this