Metallo-graphene enhanced upconversion luminescence for broadband photodetection under polychromatic illumination

Akash Gupta, Mukesh Kumar Thakur, Tirta Amerta Effendi, Ruei San Chen, Hao Yu Cheng, Kung Hsuan Lin, Mohammed Bouras, Digvijay Singh Tomar, Hsin Yu Kuo, Surojit Chattopadhyay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We report electrostatically conjugated core- silica (SiO2) shell upconversion nanoparticle (UCNPs@SiO2), and gold nanorod (AuNR) nanocomposite (NC) combined with graphene to demonstrate > 200-fold UC fluorescence enhancement. Plasmonic AuNR and graphene, resulted in enhanced fluorescence in UCNP with a maximum for the SiO2 shell thickness of 7 nm supported by finite difference time domain simulation of electric field distribution. In addition to the conventionally reported spectroscopic evidence, the plasmon aided UC fluorescence enhancement was demonstrated by direct confocal fluorescence imaging also, which was corroborated by a ~40% decrease in fluorescence lifetime. Finally, we have fabricated a NC/graphene hybrid photodetector (PD) that showed broadband (455–980 nm) photoresponse, with photoresponsivity of ~5000 AW−1, and response times of 80–200 ms under 980 nm illumination. The multiphoton infrared (IR, ~980 nm) absorbing UCNPs also show interesting high energy (blue (B), green (G), and red (R)) photoresponse which is now conclusively attributed to one-photon absorption in the UCNPs. We report, probably for the first time, the performance of the hybrid PD under monochromatic and polychromatic illumination of B, G, R, B + G, B + R, G + R, and B + G + R, among others. The photocurrent under polychromatic conditions is dominated by the strongest monochromatic response, and does not scale with net power of the illumination. The loss in photocurrent is attributed to saturation in absorption, and photothermal heating. The fast response of the PD device has been demonstrated while detecting high frequency modulated AC remote controller signals, and attributed to the fast charge sweeping by the AuNRs.

Original languageEnglish
Article number127608
JournalChemical Engineering Journal
Volume420
DOIs
StatePublished - 15 Sep 2021

Keywords

  • FDTD
  • Gold nanorods
  • Graphene
  • Plasmonic photodetector
  • Polychromatic illumination
  • Upconversion nanoparticle

Fingerprint

Dive into the research topics of 'Metallo-graphene enhanced upconversion luminescence for broadband photodetection under polychromatic illumination'. Together they form a unique fingerprint.

Cite this