Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction

Dae Hyun Nam, Oleksandr S. Bushuyev, Jun Li, Phil De Luna, Ali Seifitokaldani, Cao Thang Dinh, F. Pelayo García De Arquer, Yuhang Wang, Zhiqin Liang, Andrew H. Proppe, Chih Shan Tan, Petar Todorović, Osama Shekhah, Christine M. Gabardo, Jea Woong Jo, Jongmin Choi, Min Jae Choi, Se Woong Baek, Junghwan Kim, David SintonShana O. Kelley, Mohamed Eddaoudi, Edward H. Sargent*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

349 Scopus citations

Abstract

The electrochemical carbon dioxide reduction reaction (CO2RR) produces diverse chemical species. Cu clusters with a judiciously controlled surface coordination number (CN) provide active sites that simultaneously optimize selectivity, activity, and efficiency for CO2RR. Here we report a strategy involving metal-organic framework (MOF)-regulated Cu cluster formation that shifts CO2 electroreduction toward multiple-carbon product generation. Specifically, we promoted undercoordinated sites during the formation of Cu clusters by controlling the structure of the Cu dimer, the precursor for Cu clusters. We distorted the symmetric paddle-wheel Cu dimer secondary building block of HKUST-1 to an asymmetric motif by separating adjacent benzene tricarboxylate moieties using thermal treatment. By varying materials processing conditions, we modulated the asymmetric local atomic structure, oxidation state and bonding strain of Cu dimers. Using electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) experiments, we observed the formation of Cu clusters with low CN from distorted Cu dimers in HKUST-1 during CO2 electroreduction. These exhibited 45% C2H4 faradaic efficiency (FE), a record for MOF-derived Cu cluster catalysts. A structure-activity relationship was established wherein the tuning of the Cu-Cu CN in Cu clusters determines the CO2RR selectivity.

Original languageEnglish
Pages (from-to)11378-11386
Number of pages9
JournalJournal of the American Chemical Society
Volume140
Issue number36
DOIs
StatePublished - 12 Sep 2018

Fingerprint

Dive into the research topics of 'Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction'. Together they form a unique fingerprint.

Cite this