@inproceedings{a7b3ae3f95344ceaafd558942ea852b3,
title = "MAtt: A Manifold Attention Network for EEG Decoding",
abstract = "Recognition of electroencephalographic (EEG) signals highly affect the efficiency of non-invasive brain-computer interfaces (BCIs). While recent advances of deep-learning (DL)-based EEG decoders offer improved performances, the development of geometric learning (GL) has attracted much attention for offering exceptional robustness in decoding noisy EEG data. However, there is a lack of studies on the merged use of deep neural networks (DNNs) and geometric learning for EEG decoding. We herein propose a manifold attention network (MAtt), a novel geometric deep learning (GDL)-based model, featuring a manifold attention mechanism that characterizes spatiotemporal representations of EEG data fully on a Riemannian symmetric positive definite (SPD) manifold. The evaluation of the proposed MAtt on both time-synchronous and -asyncronous EEG datasets suggests its superiority over other leading DL methods for general EEG decoding. Furthermore, analysis of model interpretation reveals the capability of MAtt in capturing informative EEG features and handling the non-stationarity of brain dynamics. Source codes are available at https://github.com/CECNL/MAtt.",
author = "Pan, {Yue Ting} and Chou, {Jing Lun} and Wei, {Chun Shu}",
note = "Publisher Copyright: {\textcopyright} 2022 Neural information processing systems foundation. All rights reserved.; 36th Conference on Neural Information Processing Systems, NeurIPS 2022 ; Conference date: 28-11-2022 Through 09-12-2022",
year = "2022",
language = "English",
series = "Advances in Neural Information Processing Systems",
publisher = "Neural information processing systems foundation",
editor = "S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh",
booktitle = "Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022",
}