Material characteristics and thermal stability of cosputtered Ta-Ru thin films

D. S. Wuu*, C. C. Chan, Ray-Hua Horng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Ta-Ru alloy films were studied for use as a heater material in thermal ink-jet printheads. Thin films with different Ta/Ru compositions were deposited on oxidized Si substrates by cosputtering. The Ru/Ta ratio in the alloy was found to strongly affect the structure, resistivity, stress, and thermal stability. From x-ray and transmission electron microscopy examinations, the Ta1Ru1 phase has formed and dominated in the compositions exceeding 54 at. % Ru. With increasing the Ru content above 13 at. %, the resistivities of the Ta-Ru thin films begin to rise and can reach a maximum of ∼320 μΩ cm in the composition range between 35 and 54 at. % Ru. It is found that the films with small Ru ratios (≤22%) exhibit poor thermal stability and the compressive stress increases after each thermal cycle (from 25 to 450°C) in air, while the films with larger Ru atomic ratios show good stability. The measured stress-temperature behavior was investigated by Auger depth profiling analysis and x-ray photoelectron spectroscopy. The oxygen content of samples after repeated thermal cycling is largely related to the alloy composition. The observed preferential oxidation of Ta in the Ta-Ru samples can be further interpreted by thermodynamic calculations. The Ta-rich surface oxide is believed to be responsible for the oxidation resistance of the Ru atom at high temperatures. This results in the Ru of the metallic state though the oxidation of Ta occurs. Finally, an open pool test environment is arranged such that the liquid pool can be regarded as an infinite reservoir for the heater, from the standpoint of both momentum and energy transport. A lifetime over 1 × 107 driving pulses can be obtained for the Ta-Ru thin-film heater with 54 at. % Ru content.

Original languageEnglish
Pages (from-to)3327-3332
Number of pages6
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Volume17
Issue number6
DOIs
StatePublished - 1 Jan 1999

Fingerprint

Dive into the research topics of 'Material characteristics and thermal stability of cosputtered Ta-Ru thin films'. Together they form a unique fingerprint.

Cite this